The rampant use of antibiotics in the last half-century has imposed an unforeseen biological cost, the unprecedented acceleration of bacterial evolution to produce drug-resistant strains to practically every approved antibiotic. This rise in antimicrobial drug resistance, alongside the failure of conventional research efforts to discover new antibiotics, may eventually lead to a public health crisis that can drastically curtail our ability to combat infectious disease. To address this public health need for novel countermeasure strategies, research efforts have recently focused on identification of genes in the host, rather than the pathogen, that are essential for successful pathogen infection, as potential targets for drug discovery. In the past decade, RNA interference (RNAi) has emerged as a powerful tool for analyzing gene function by silencing target genes through the specific destruction of their mRNAs. Based on RNAi methodology, high-throughput genome- wide assay platforms have been developed to identify candidate host genes that are manipulated by pathogens during infection. In this review, we will discuss recent strategies for RNAi-based genomic screens to investigate hostpathogen mechanisms in human cell models using both bacterial pathogens, including Salmonella typhimurium, Mycobacterium tuberculosis, and Listeria monocytogenes, and viruses, such as Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV) and influenza. These functional genomics studies have begun to elucidate novel pathogen virulence mechanisms and thus, may serve as the basis for the design of novel host-based inhibitor therapeutics that can block or alleviate the downstream effects of pathogen infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157016310793180657 | DOI Listing |
Nucleic Acids Res
January 2025
SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.
Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.
View Article and Find Full Text PDFJ Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFZoonoses Public Health
January 2025
CHUV, Oniris, Nantes, France.
Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!