1,3-Butadiene is one of the top air pollution risk drivers in the United States. The ambient air concentrations in Houston, TX are of particular interest because of the relatively large number of stationary industrial sources that report 1,3-butadiene emissions and the relatively large number of vehicle miles traveled every day on Houston roadways. Several Federal and State regulatory programs initiated over the last two decades regulate the amount of 1,3-butadiene emitted to the air from industrial, mobile, and area sources. Emissions reductions from industrial sources in Houston have also been achieved through voluntary agreements between individual facilities and the Texas Commission on Environmental Quality (TCEQ). The impact of these regulatory and voluntary initiatives on air quality has been measured by a network of 30 monitors stationed within the Houston area. Most of the area's monitors have measured reductions in annual average 1,3-butadiene levels in the range of 40-80%. The greatest decreases and statistically significant downward trends have been measured at the monitoring sites closest to industrial facilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es101511u | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.
View Article and Find Full Text PDFIn Vitro Model
June 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea University, Sketty, Wales SA2 8PP UK.
Unlabelled: Owing to increased pressure from ethical groups and the public to avoid unnecessary animal testing, the need for new, responsive and biologically relevant in vitro models has surged. Models of the human alveolar epithelium are of particular interest since thorough investigations into air pollution and the effects of inhaled nanoparticles and e-cigarettes are needed. The lung is a crucial organ of interest due to potential exposures to endogenous material during occupational and ambient settings.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
The complex and dynamic nature of airborne fine particulate matter (PM) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM samples ( = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!