Characterization of biochars produced from cornstovers for soil amendment.

Environ Sci Technol

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA.

Published: October 2010

Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 °C and gasification at 700 °C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es101337xDOI Listing

Publication Analysis

Top Keywords

soil amendment
8
cation exchange
8
exchange capacity
8
biochar materials
8
pyrolysis conditions
8
fast pyrolysis
8
cec fast-pyrolytic
8
standard soil
8
soil sample
8
carbon sequestration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!