Because of the high reactivity of Grignard reagents, a direct, highly enantioselective Grignard reaction with aldehydes has rarely been disclosed. In this report, Grignard reagents were introduced with bis[2-(N,N'-dimethylamino)ethyl] ether (BDMAEE) to effectively deactivate their reactivity; thus, a highly enantioselective alkylation of aldehydes with Grignard reagents resulted from catalysis by (S)-BINOL-Ti(O(i)Pr)(2). It is thought that BDMAEE chelates the in situ generated salts MgBr(2) from a Schlenk equilibrium of RMgBr and Mg(O(i)Pr)Br from transmetalation of RMgBr with Ti(O(i)Pr)(4). The Mg salts can actively promote the undesired background reaction to give the racemate. The chelation definitely inhibits the catalytic activity of the Mg salts, suppresses the unwanted background reaction, and enables the highly enantioselective addition catalyzed by (S)-BINOL-Ti(O(i)Pr)(2). Consequently, the Mg salt byproducts were not removed, less Ti(O(i)Pr)(4) than RMgBr was used, and extremely low temperature was avoided in this catalytic asymmetric reaction in comparison with the research disclosed before. Various alkyl Grignard reagents were investigated in the asymmetric addition, and (i)BuMgBr resulted in the highest enantioselectivity, >99%. Furthermore, important intermediate secondary arylpropanols for chiral drug synthesis were effectively synthesized with high enantioselectivity, up to 97%, in one step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo101351t | DOI Listing |
Angew Chem Int Ed Engl
December 2024
National University of Singapore Department of Chemistry, Department of Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
-alkyl amines can be conveniently prepared in one step from nitriles by a double addition of ethyl or propyl Grignard reagent mediated by a commercially available lanthanum chloride-lithium chloride complex solution. The reaction operates on a variety of benzonitriles, with several heterocyclic nitriles and an alkyl nitrile also being suitable substrates.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
Consecutive all-carbon quaternary centers were synthesized in three steps from the corresponding ketones. The three reactions were (1) Knoevenagel condensation of ketone and malononitrile to afford dicyanoalkene, (2) 1,4-addition reaction of a Grignard reagent to dicyanoalkene, and (3) oxidative transformation of a malononitrile moiety to an ester, thioester, amide, and α-nitroketone. This method was applied to the synthesis of 17α-methyl steroids with a good yield and excellent diastereoselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
Linchpin reagents are building blocks that can be chemoselectively functionalized to afford products with a common, useful functional group. In this work, we describe the development and validation of the first amide linchpin reagent and demonstrate its use as a doubly electrophilic building block for the synthesis of a variety of amides, including challenging classes. The linchpin reagent was first functionalized via rhodium-catalyzed electrophilic amination.
View Article and Find Full Text PDFChemSusChem
November 2024
Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland.
Advancing the use of air-sensitive polar organometallic Grignard and organolithium reagents under more environmentally benign conditions, here we report the addition of these reagents to α,β-unsaturated ketones and aldehydes using the deep eutectic solvent (DES) choline chloride (ChCl): glycerol (Gly) (1 : 2), under air. Reactions occur at room temperature within seconds with excellent regioselective control. Furthering understanding of how these C-C bond forming processes take place in these reaction media, we have explored the surface concentration of the organic substrate (chalcone) in DES using interfacial tension and neutron reflectivity measurements, finding that chalcone is concentrated at the DES-hydrocarbon interface compared to the bulk concentration, although the interfacial chalcone concentration is still relatively low in this system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!