Although the benefits of decreased sample temperature for the molecular profiling of organic materials with time-of-flight secondary ion mass spectrometry (TOF-SIMS) have been established, the mechanism behind spectral changes observed at low temperature, particularly increased protonated molecular ion (M + H)(+) yields, have not been examined in detail. We have developed a procedure to investigate these effects by monitoring secondary ion yields under sustained primary ion bombardment as the sample temperature is cooled from room temperature down to 80 K. Examination of biomaterials such as an amino acid (arginine), a polypeptide (Gly-Gly-Tyr-Arg), a lipid (1,2 dipalmitoyl-sn-glycero-3 phosphatidylcholine), and a drug molecule (cyclosporine A) each provide evidence of ion yield enhancement at 80 K under either 20 keV C(60)(+) or 20 keV Au(3)(+) bombardment. For example, arginine shows a 2-fold increase in the steady-state intensity for the (M + H)(+) ion at 80 K compared to the steady state at 300 K. It is shown that there is a correlation between the yield enhancement and a reduction in the damage cross section, which for arginine under 20 keV Au(3)(+) bombardment decreases from 5.0 ± 0.4 × 10(-14) cm(2) at 300 K to 2.0 ± 0.3 × 10(-14) cm(2) at 80 K. The role of water as the facilitator for this reduction is explored through the use of H(2)O and D(2)O dosing experiments at 80 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac101746h | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.
ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.
View Article and Find Full Text PDFPLoS One
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
Background: Previous studies have separately suggested a possible association between the vitamin exposure, blood biochemical indicators, and bone density. Our study aimed to investigate the relationship between vitamin exposure serum concentrations, blood biochemical indicator serum concentrations, and BMC and BMD using the NHANES 2017-2018 nutrient survey data. This population-based cross-sectional study aimed to explore these associations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.
Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
Monounsaturated fatty acids (MUFA) are an important class of nutrients and are involved in lipid metabolism. The positions of the C=C bond and cis-trans isomerism have a significant influence on their physiological activity. However, simultaneously detecting these two structural properties has been challenging due to multiple isomers of MUFA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!