The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936276 | PMC |
http://dx.doi.org/10.1016/j.jcp.2010.07.025 | DOI Listing |
Phys Rev Lett
December 2024
Dipartimento di Fisica "Ettore Pancini," Università degli Studi di Napoli Federico II, Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy; INFN, Sezione di Napoli, Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy; and Scuola Superiore Meridionale, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli, Italy.
We revisit the prescription commonly used to define holographic correlators on the celestial sphere of Minkowski space as an integral transform of flat space scattering amplitudes. We propose a new prescription according to which celestial holographic correlators are given by the Mellin transform of bulk time-ordered correlators with respect to the radial direction in the hyperbolic slicing of Minkowski space, which are then extrapolated to the celestial sphere along the hyperbolic directions. This prescription is analogous to the extrapolate definition of holographic correlators in AdS/CFT and, like in AdS, is centered on (off-shell) correlation functions as opposed to (on-shell) S-matrix elements.
View Article and Find Full Text PDFNano Lett
January 2025
University of Science & Technology of China, Hefei, Anhui 230026, China.
Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography, University of Sindh, Jamshoro, Sindh, Pakistan.
This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China.
A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
In this paper, a miniaturized 2 × 2 MIMO dual-wideband ground radiation antenna targeting Wi-Fi 6/6E/7 standards using 2.4 GHz, 5 GHz, and 6 GHz frequency bands with sufficient antenna performance was designed. The proposed antenna system contains four identical 4 mm × 6 mm antennas of the internal loop type and two identical 6 mm × 6 mm isolators containing lumped LC elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!