Background: Mutations in the SLC26A4 gene, coding for the anion transporter pendrin, are responsible for Pendred syndrome, characterized by congenital sensorineural deafness and dyshormonogenic goiter. The physiological role of pendrin in the thyroid is still unclear and the lack of a thyroid phenotype in some patients with SLC26A4 mutations and in Slc26a4 (-/-) mice indicate the existence of environmental or individual modifiers able to compensate for pendrin inactivation in the thyroid. Since pendrin can transport iodide in vitro, variations in iodide supply have been claimed to account for the thyroid phenotype associated with pendrin defects.
Aim: The Slc26a4 (-/-) mouse model was used to test the hypothesis that iodide supply may influence the penetrance and expressivity of SLC26A4 mutations.
Materials And Methods: Slc26a4 (-/-) and (+/+) mice were fed up to 6 months on a standard or low iodine diet and were evaluated for thyroid structural abnormalities or biochemical hypothyroidism.
Results: A 27-fold iodide restriction induced similar modifications in thyroid histology, but no differences in thyroid size, T4 or TSH levels were observed between between Slc26a4 (-/-) and (+/+) mice, either in standard conditions and during iodine restriction.
Conclusions: Iodide restriction is not able to induce a thyroid phenotype in Slc26a4 (-/-) mice. These experimental data, together with those coming from a review of familial Pendred cases leaving in regions either with low or sufficient iodide supply, support the idea that the expression of thyroid phenotype in Pendred syndrome is more powerfully influenced by individual factors than by dietary iodide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3275/7262 | DOI Listing |
iScience
January 2025
Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan.
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:
Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.
Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.
Am J Otolaryngol
December 2024
Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China. Electronic address:
Purpose: To explore how hearing changes over time and the characteristics associated with progressive hearing loss in children with enlarged vestibular aqueduct (EVA), and develop a prediction model for anticipation of hearing progression probability.
Methods: A retrospective analysis was conducted on 48 children (92 ears) diagnosed with EVA. A total of 314 audiograms were included in the analysis of hearing loss trajectories using linear mixed-effects model.
Biomed Rep
February 2025
Newborn Screening Center, Foshan Women and Children Hospital, Foshan, Guangdong 528000, P.R. China.
Congenital hypothyroidism (CH) is a common neonatal endocrine disorder that is characterized by irreversible neurodevelopmental and growth retardation due to insufficient biosynthesis of thyroid hormones at birth. Determining the causative genetic variants in infants is important for neonatal management. It was aimed to evaluate the variant frequencies and spectrum of CH in the neonatal population of Foshan, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!