Anticoagulation with vitamin K antagonists (VKAs) is problematic because of difficulties in safely managing dosing. Polymorphisms in cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase genes (VKORC1) have been shown to affect VKA dosing in adults. The association of these polymorphisms on VKA dosing in children has not been investigated. The objective of the study was to assess associations of CYP2C9 and VKORC1 polymorphisms and clinical variables on VKA dosing in children. A nonselected cohort of pediatric patients receiving VKA were tested for CYP2C9 and VKORC1 polymorphisms, and clinical data were collected. Multiple linear regression modeling was used to assess relationships of VKA dose with genetic and clinical variables. Fifty-nine patients were recruited; 55.9% were receiving warfarin, and 44.1% were on phenprocoumon. There was a negative association of age with VKA dose (P < .001). Comparing VKORC1 genotypes, the AA group required significantly lower daily doses than GG group (P = .011). In the full model including age, VKORC1 and CYP2C9 genotypes accounted for 38% of dose variation. Age explained 28.3% of VKA dose variations; VKORC1 and CYP2C9 explained only 3.7% and 0.4%, respectively. In children, the most critical factor in determining VKA dose is age. VKORC1/CYP2C9 genotypes only marginally explain dose variations.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2010-05-283861DOI Listing

Publication Analysis

Top Keywords

vka dose
16
vkorc1 cyp2c9
12
vka dosing
12
pediatric patients
8
vitamin antagonists
8
cyp2c9 genotypes
8
vka
8
dosing children
8
cyp2c9 vkorc1
8
vkorc1 polymorphisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!