The peripheral nerves of the upper limb are affected by a number of entrapment and compression neuropathies. These discrete syndromes involve the brachial plexus as well as the musculocutaneous, axillary, suprascapular, ulnar, radial, and median nerves. Clinical examination and electrophysiologic studies are the traditional mainstay of diagnostic work-up; however, ultrasonography and magnetic resonance imaging provide spatial information regarding the affected nerve and its surroundings, often assisting in narrowing the differential diagnosis and guiding treatment. Imaging is particularly valuable in complex cases with discrepant nerve function test results. Familiarity with the clinical features of various peripheral neuropathies of the upper extremity, the relevant anatomy, and the most common sites and causes of nerve entrapment assists in diagnosis and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.305095169DOI Listing

Publication Analysis

Top Keywords

peripheral neuropathies
8
neuropathies upper
8
upper limb
8
brachial plexus
8
multimodality imaging
4
imaging peripheral
4
limb brachial
4
plexus peripheral
4
peripheral nerves
4
nerves upper
4

Similar Publications

NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway.

J Neuroinflammation

January 2025

Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.

View Article and Find Full Text PDF

Objective: This study aims to investigate the relationship between preoperative cervical intervertebral foramen width and area and the persistence of postoperative pain in patients diagnosed with cervical spondylotic radiculopathy (CSR).

Methods: Patients were divided into two groups, based on their pain relief at the 6-month postoperative follow-up: the pain relief group and the persistent pain group. We compared various parameters, including age, sex, body mass index (BMI), duration of symptoms, preoperative Japanese Orthopedic Association (JOA) score, Neck Disability Index (NDI) score, postoperative ratio of disc space distraction, preoperative width of the intervertebral foramen (WIVF), and area of the intervertebral foramen (AIVF) between the two groups.

View Article and Find Full Text PDF

Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses.

View Article and Find Full Text PDF

The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.

View Article and Find Full Text PDF

The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!