Enzymes involved in the epigenetic regulation of the genome represent promising starting points for therapeutic intervention by small molecules, and DNA methyltransferases (DNMT) are emerging targets for the development of a new class of cancer therapeutics. In this work, we present nanaomycin A, initially identified by a virtual screening for inhibitors against DNMT1, as a compound inducing antiproliferative effects in three different tumor cell lines originating from different tissues. Nanaomycin A treatment reduced the global methylation levels in all three cell lines and reactivated transcription of the RASSF1A tumor suppressor gene. In biochemical assays, nanaomycin A revealed selectivity toward DNMT3B. To the best of our knowledge, this is the first DNMT3B-selective inhibitor identified to induce genomic demethylation. Our study thus establishes the possibility of selectively inhibiting individual DNMT enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-10-0609 | DOI Listing |
Acta Pharmacol Sin
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
Ovarian cancer presents a significant treatment challenge due to its insidious nature and high malignancy. As autophagy is a vital cellular process for maintaining homeostasis, targeting the autophagic pathway has emerged as an avenue for cancer therapy. In the present study, we identify apolipoprotein B100 (ApoB100), a key modulator of lipid metabolism, as a potential prognostic biomarker of ovarian cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined.
View Article and Find Full Text PDFSci Rep
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Tumor vasculature exhibit numerous abnormal features distinct from those of healthy vessels, potentially advancing tumor development by establishing an aberrant microenvironment. Therefore, vascular normalization has proven to be an effective tactic for substantially enhancing treatment efficacy across multiple tumors. However, the methods to attain vascular normalization may vary among tumor types.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States.
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!