The mechanism(s) behind folate rescue of neural tube closure are not well understood. In this study we show that maternal intake of folate prior to conception reverses the proliferation potential of neural crest stem cells in homozygous Splotch embryos (Sp(-/-)) via epigenetic mechanisms. It is also shown that the pattern of differentiation seen in these cells is similar to wild-type (WT). Cells from open caudal neural tubes of Sp(-/-) embryos exhibit increased H3K27 methylation and decreased expression of KDM6B possibly due to up-regulation of KDM6B targeting micro-RNAs such as miR-138, miR-148a, miR-185, and miR-339-5p. In our model, folate reversed these epigenetic marks in folate-rescued Sp(-/-) embryos. Using tissue from caudal neural tubes of murine embryos we also examined H3K27me2 and KDM6B association with Hes1 and Neurog2 promoters at embryonic day E10.5, the proliferative stage, and E12.5, when neural differentiation begins. In Sp(-/-) embryos compared with WT, levels of H3K27me2 associated with the Hes1 promoter were increased at E10.5, and levels associated with the Neurog2 promoter were increased at E12.5. KDM6B association with Hes1 and Neurog2 promoters was inversely related to H3K27me2 levels. These epigenetic changes were reversed in folate-rescued Sp(-/-) embryos. Thus, one of the mechanisms by which folate may rescue the Sp(-/-) phenotype is by increasing the expression of KDM6B, which in turn decreases H3K27 methylation marks on Hes1 and Neurog2 promoters thereby affecting gene transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978621 | PMC |
http://dx.doi.org/10.1074/jbc.M110.126714 | DOI Listing |
Dev Cell
August 2024
RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan. Electronic address:
Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs.
View Article and Find Full Text PDFFront Neurosci
May 2023
Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
Introduction: Alzheimer's disease (AD) is the most common form of dementia worldwide. This study investigated the effects of lipopolysaccharide on neurosteroidogenesis and its relationship to growth and differentiation using SH-SY5Y cells.
Methods: In this study, we used the MTT assay to assess the impact of LPS on SH-SY5Y cell viability.
Stem Cell Reports
September 2022
Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea. Electronic address:
Human induced pluripotent stem cells (hiPSCs) can differentiate into neurons and glia via neural progenitor cells and are widely used for neurogenic studies. However, directly visualizing the transition status during the neural differentiation of live cells is difficult. Here, targeting NEUROG2 (NGN2) and TUBB3 as markers of neurogenic cells and neurons, respectively, we established TUBB3/NGN2 dual-reporter hiPSCs using CRISPR-Cas9 technology.
View Article and Find Full Text PDFAnn Anat
January 2022
Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China. Electronic address:
The HES proteins (hairy and Enhancer of split (E(spl)) homologs) are basic helix-loop-helix (bHLH) transcription factors that regulate the proliferation and differentiation of stem cells. Family members HES1, 3, and 5 are all critical regulators of nervous system development. The Hes genes exhibit oscillatory expression levels, and this dynamic expression allows for the complex regulation of numerous downstream genes such as Ascl1, Neurog2, Olig2 involved in the differentiation of specific cell types.
View Article and Find Full Text PDFNeuron
September 2021
Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!