To develop an antithrombotic material for preparation of small-diameter vascular graft, we describe a novel method to prepare a poly(vinyl alcohol) (PVA)-heparin hydrogels prepared by high-hydrostatic pressure (HHP, 980 MPa), which is designed for sustained release of heparin. Antithrombogenic test revealed that HHP method would not affect the antithrombin III (ATIII) activity of the released heparin. The distribution of heparin in the polymer matrix was homogeneous than freeze-thawing gel, due to the fast gelling affect of PVA which takes approximately 10 min for gel formation. The formation of intra- and intermolecular hydrogen bonds between PVA chains has trapped the heparin inside, suppressing the phase separation between PVA and heparin. Furthermore, evenly distribution of heparin induced the formation of heparin and PVA molecular complex, which brought the sustained release of heparin from the PVA despite the high swelling ratio. Our results show that it is possible to prepare a PVA-heparin hybrid gel which can be applied as an effective material for an antithrombotic system without using any chemical agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2010.09.001 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom. Electronic address:
Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared.
View Article and Find Full Text PDFPhys Rev E
November 2024
Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
Dielectric elastomer actuators (DEAs) are an emerging type of soft actuators based on intelligent electroactive polymers. Compared with conventional rigid actuators, DEAs can adapt to extreme hydrostatic pressures without any bulky protective vessels and, therefore, have demonstrated great promises in high-hydrostatic pressure applications such as deep-sea explorations. However, the effects of the enormous hydrostatic compressions on the mechanical and electromechanical coupling properties and electrical breakdown strengths of DEAs remain unclear due to the restrictions in the existing theoretical models and limitations in the experimental techniques developed for DEAs.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China.
The gravity-driven membrane (GDM) system is an energy-efficient and environmentally sustainable water purification process; however, after prolonged operation, its membrane flux remains relatively low, making it necessary to adopt effective strategies for improving system performance. In this study, the effects of hydrostatic pressure (60, 100, 200 mbar) and pre-coating with aluminum-based flocs (ABF) on GDM flux and organic matter removal were investigated, and the regulatory mechanisms of the bio-cake layer were explored through interactions between morphological structure, composition and microbes. The results showed that the stable flux of the GDM-ABF system at a hydrostatic pressure of 60 mbar was almost equal to that at 100 mbar, and it outperformed higher hydrostatic pressure in organic matter removal, resulting in a more porous bio-cake layer structure.
View Article and Find Full Text PDFFood Res Int
January 2025
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region/School of Food Science and Technology, Shaoguan University, Shaoguan 512005, China. Electronic address:
'Germination-inactivation' strategy is recognized as an effective approach for the control of C. perfringens spores. However, the presence of superdormant (SD) spores limits the implementation of 'germination-inactivation' strategy.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!