Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles.

J Control Release

Laboratory of General Biochemistry and Physical Pharmacy, Harelbekestraat 72, 9000 Gent, Belgium. Electronic address:

Published: November 2010

A great deal of attention in biopharmacy and pharmaceutical technology is going to the development of nanoscopic particles to efficiently deliver nucleic acids to target cells. Despite the great potential of nucleic acids for treatment of various diseases, progress in the field is fairly slow. One of the causes is that development of suitable nanoscopic delivery vehicles is hampered by insufficient knowledge of their physicochemical and biophysical properties during the various phases of the transfection process. To address this issue, in the past decade we have developed and applied advanced fluorescence microscopy techniques that can provide a better insight in the transport and stability of nanoparticles in various biological media. This mini-review discusses the basic principles of fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT), and gives an overview of studies in which we have employed these techniques to characterize the transport and stability of nucleic acid containing nanoparticles in extracellular media and in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2010.08.029DOI Listing

Publication Analysis

Top Keywords

advanced fluorescence
8
fluorescence microscopy
8
nucleic acid
8
acid nanoparticles
8
nucleic acids
8
transport stability
8
microscopy methods
4
methods illuminate
4
illuminate transfection
4
transfection pathway
4

Similar Publications

Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis.

Part Fibre Toxicol

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.

Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.

View Article and Find Full Text PDF

A self-aggregated thermally activated delayed fluorescence nanoprobe for HClO imaging and activatable photodynamic therapy.

Talanta

January 2025

Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China. Electronic address:

Hypochlorous acid (HClO/ClO) is a common ROS that exhibits elevated activity levels in cancer cells. In this study, an ClO-triggered TADF probe, PTZ-MNI, was designed based on a naphthalimide core. PTZ-MNI self-assemble in aqueous environments, exhibiting significantly enhanced fluorescence that demonstrated typical aggregation-induced delayed fluorescence (AIDF) characteristics.

View Article and Find Full Text PDF

Development of fluorescent-photothermal probe based on photoinduced energy transfer: A dual-readout immunosensor for the detection of illegal additive.

Biosens Bioelectron

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs.

View Article and Find Full Text PDF

Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

January 2025

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.

View Article and Find Full Text PDF

Directed Evolution of Multicyclic Peptides Using Yeast Display for Sensitive and Selective Fluorescent Analysis of CD28 on the Cell Surface.

Anal Chem

January 2025

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!