Biomaterial surfaces structured with topographical features have been predicted to play an important role in the next generation of biomedical implants. Specific trends with regard to the influence of the topographical effect on cellular behavior are however challenging to establish due to differences in the topographical features and geometries in the various studies. Here, we demonstrate the use of a highly versatile combinatorial screening approach to identify the effect of 169 distinct surface topographies, consisting of pillars, on fibroblast proliferation and mechanical response. Altering the inter-pillar gap size of the structures revealed a significant change in fibroblast proliferation and identified obvious stress-induced changes in the cytoskeleton and focal adhesion morphology. Larger (4-6 μm) inter-pillar gap sizes reduced fibroblast proliferation and elicited a strong elongation leading to a disruption of the actin cytoskeleton anchored primarily to focal adhesions located between the pillars. Smaller (1-2 μm) inter-pillar gap sizes, on the contrary, caused the fibroblasts to proliferate comparable to cells on a non-structured surface with cells having a clear actin cytoskeleton attached to focal adhesions located mostly on top of the pillars. The approach reveals a strong correlation between the exact topographical periodicities and cellular responses such as cell proliferation, cell morphology and focal adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2010.08.048DOI Listing

Publication Analysis

Top Keywords

fibroblast proliferation
12
inter-pillar gap
12
combinatorial screening
8
topographical features
8
focal adhesion
8
gap sizes
8
actin cytoskeleton
8
focal adhesions
8
adhesions located
8
screening human
4

Similar Publications

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!