Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum.

J Hazard Mater

Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.

Published: December 2010

The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l(-1) on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg(-1). The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l(-1) Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P(N)). Reductions in P(N) could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.08.036DOI Listing

Publication Analysis

Top Keywords

arthrocnemum macrostachyum
8
135 mmol
8
mmol l-1
8
pigment concentrations
8
cadmium
6
macrostachyum
6
accumulation tolerance
4
tolerance characteristics
4
characteristics cadmium
4
cadmium halophytic
4

Similar Publications

This study aimed to evaluate the potential of phytochemicals from two native UAE plant species, Arthrocnemum macrostachyum and Tamarix nilotica, as anti-cancer agents. The plant extracts were obtained using two methods, maceration, and microwave-assisted extraction (MAE), and were subsequently evaluated for their in vitro cytotoxicity against three cancer cell lines: breast (MDA-MB-231), colon (HCT-116), and lung (A-549). Results suggest that: 1) MAE is more efficient than maceration in recovering metabolites from plant biomass based on measurements of total phenolic content, radical scavenging activity, and bioactivity of extracts based on in vitro cytotoxicity.

View Article and Find Full Text PDF

Introduction: Little is known about the similarities and differences in responses of plants grown from heteromorphic seeds, which are morpho-physiologically dissimilar seeds produced simultaneously on the same plant.

Methods: In this context, we studied how plants grown from heteromorphic (i.e.

View Article and Find Full Text PDF

This study aimed to isolate salt-tolerant pectinolytic bacteria from the rhizosphere of a salt marsh plant and utilize their pectinases for the clarification of detox juice preparation. Sixteen halophilic bacterial strains were isolated from the rhizospheric soil of . The isolates were screened for pectinase activity, and two strains, ASA21 and ASA29, exhibited the highest pectinase production in the presence of 2.

View Article and Find Full Text PDF

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A.

View Article and Find Full Text PDF

Intricate Networks in Nomenclature: Cases of Naming in , , and (Amaranthaceae).

Plants (Basel)

June 2024

Department of Environmental Biology, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.

The nomenclatural status and typification of the names , , var. , var. , var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!