Antitumor activity of molecules and cells of the innate immune system has been reported. Here we propose a method for targeting preferred innate immune cells and magnifying their tumoricidal effect at the tumor microenvironment, by modular multiple-component complexes (termed TILTAN). As a model, micro-scale complexes were assembled carrying monoclonal anti-HER2 antibodies, lipopolysaccharide and/or mannose. The complexes showed high binding capacity to HER2-positive cancer cells in vitro, high induction of interleukin-1 RNA transcription by the activated monocytes and ability to mediate monocytes' attachment to HER2-positive cells. TILTAN treatment was found safe in in vivo testing and induced change in interleukin-1 RNA transcription in tumors xenografts. We thus present a new vision of targeting a desired innate immune response to the tumor microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2010.08.083DOI Listing

Publication Analysis

Top Keywords

innate immune
16
tumor microenvironment
12
immune response
8
response tumor
8
interleukin-1 rna
8
rna transcription
8
targeted microbeads
4
microbeads attraction
4
attraction induction
4
induction specific
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.

View Article and Find Full Text PDF

Macrophage Polarization: Learning to Manage It 3.0.

Int J Mol Sci

January 2025

Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy.

Macrophages are cells of the innate immune system with very peculiar characteristics, so plastic that they respond rapidly to environmental changes by assuming different and sometimes contrasting functions, such as initiating a physiological inflammatory response or interrupting it and repairing damaged tissues [...

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!