Purpose: Modern radiotherapy requires assessment of patient anatomical changes. By using unidirectional registration methods, the quantified anatomical changes are asymmetric, i.e., depend on the direction of the registration. Moreover, the registration is challenged by the large and complex organ deformations that can occur in, e.g., cervical cancer patients. The aim of this work was to develop, test, and validate a symmetric feature-based nonrigid registration method that can handle organs with large-scale deformations.

Methods: A symmetric version of the unidirectional thin plate spline robust point matching (TPS-RPM) algorithm was developed, implemented, tested, and validated. Tests were performed by using the delineated cervix and uterus and bladder in CT scans of five cervical cancer patients. For each patient, five CT scans with a large variability in organ shape, volume, and deformations were acquired. Both the symmetric and the unidirectional algorithm were employed to calculate the registration geometric accuracy (surface distance and surface coverage errors), the inverse consistency, the residual distances after transforming anatomical landmarks, and the registration time. Additionally, to facilitate the further use of our symmetric method, a large set of input parameters was tested.

Results: The developed symmetric algorithm handled successfully the registration of bladders with extreme volume change for which TPS-RPM failed. Compared to the unidirectional algorithm the symmetric algorithm improved, for the registration of organs with large volume change, the inverse consistency by 78% and the surface coverage by 46%. Similarly, for organs with small volume change, the symmetric algorithm improved the inverse consistency by 69% and the surface coverage by 13%. The method allowed for anatomically coherent registration in only 35 s for cervix-uterus and 151 s for bladder, while keeping the inverse consistency errors around 1 mm and the surface matching errors below 1 mm. Compared to rigid alignment the symmetric method reduced the residual distances between anatomical landmarks from a range of 5.8 +/- 2-70.1 +/- 20.1 mm to a range of 1.9 +/- 0.2-8.5 +/- 5.2 mm.

Conclusions: The developed symmetric method could be employed to perform fast, accurate, consistent, and anatomically coherent registration of organs with large and complex deformations. Therefore, the method is a useful tool that could support further developments in high precision image guided radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.3443436DOI Listing

Publication Analysis

Top Keywords

inverse consistency
16
cervical cancer
12
cancer patients
12
surface coverage
12
symmetric method
12
symmetric algorithm
12
volume change
12
registration
11
symmetric
10
nonrigid registration
8

Similar Publications

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

The impact of cortical and subcortical volumes on major depression risk: A genetic study.

J Affect Disord

January 2025

Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China. Electronic address:

Objective: This study aimed to explore the causal relationship between brain cortical and subcortical structures and major depressive disorder (MDD) using the Mendelian Randomization (MR) method.

Methods: Single nucleotide polymorphisms (SNPs) were used as instrumental variables to analyze subcortical brain volume, cortical thickness, and surface area as exposure factors, with MDD as the outcome. Multiple sensitivity analyses were conducted to validate the robustness of the results.

View Article and Find Full Text PDF

Objective: The study aimed to investigate the causal relationship between serum 25-hydroxyvitamin D (25(OH)D) levels and epilepsy using Mendelian randomization (MR), thereby addressing confounding and reverse causality issues in observational studies.

Methods: We employed a two-sample bidirectional MR design utilizing summary-level data from the IEU OpenGWAS project. Serum 25(OH)D levels were analyzed using the publicly available dataset ebi-a-GCST90000618, which included 496,946 European samples and 68,960,93 SNPs.

View Article and Find Full Text PDF

Background: Klotho is a geroprotective protein which has been recognized for its anti-aging properties. Pre-clinical evidence suggested that boosting Klotho might hold therapeutic potential in ageing and disease. Epilepsy is a neurological disorder characterized by its recurrent seizures.

View Article and Find Full Text PDF

Background: The rising prevalence of depression among cancer patients is alarming. This study examines the relationship between the Oxidative Balance Score (OBS)-a composite measure of dietary and lifestyle factors-and depression, including specific depressive symptoms in this population.

Methods: Data were analyzed from 3,280 adult cancer patients collected in NHANES from 2005-2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!