Objectives: To clarify whether erythropoietin (EPO) could substitute for the serum component in cultured retinal neurocytes suffering from serum withdrawal.

Methods: The study was performed in the Shanghai Institute of Traumatology and Orthopedics, Shanghai, China between April 2008 and March 2009. A total of 160 postnatal 2-3 day-old Sprague-Dawley rats were used for this study. After the retinal neurocytes were cultured for 48 hours, the culture media was replaced with serum-free media, and the cells were exposed to 1 U/ml, 3 U/ml, and 6 U/ml EPO for another 24 or 48 hours, the cell body diameter was then assessed using a computerized image-analysis system, and the survival and apoptosis rates of those cells were estimated by method of transcription and translation assay and flow cytometry. Immunocytochemistry was used to detect EPO and erythropoietin receptor (EPOR) expression.

Results: The retinal neurocytes had obvious EPO/ EPOR expression. The early (p = 0.002) and total (p = 0.049) apoptosis rates of retinal neurocytes cultured with serum withdrawal were significantly higher than that of neurocytes cultured with serum, and the cell viability of neurocytes cultured with serum withdrawal was significantly lower than that of neurocytes cultured with serum (p = 0.047). The EPO had no effect on the cell body diameter of cultured retinal neurocytes. The cell viability and the apoptosis rates of retinal neurocytes were not significantly different from that of simple serum-withdrawal culture at any EPO concentration.

Conclusion: As the addition of EPO immediately after serum withdrawal had no effect in preventing retinal neurocytes apoptosis induced by serum withdrawal, EPO cannot substitute for the serum component.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retinal neurocytes
32
serum withdrawal
20
neurocytes cultured
20
cultured serum
16
apoptosis rates
12
neurocytes
11
serum
10
retinal
8
epo substitute
8
substitute serum
8

Similar Publications

Background/ Aims: To analyze the longitudinal change in Bruch's membrane opening minimal rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (pRNFL) thickness using optical coherence tomography (OCT) after implantation of a PRESERFLO® microshunt for surgical glaucoma management in adult glaucoma patients.

Methods: Retrospective data analysis of 59 eyes of 59 participants undergoing implantation of a PRESERFLO microshunt between 2019 and 2022 at a tertiary center for glaucoma management. Surgical management included primary temporary occlusion of the glaucoma shunt to prevent early hypotony.

View Article and Find Full Text PDF

Adaptation optimizes sensory encoding for future stimuli.

PLoS Comput Biol

January 2025

Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.

View Article and Find Full Text PDF

Retinal diseases often lead to degeneration of specific retinal cell types with currently limited therapeutic options to replace the lost neurons. Previous studies have reported that overexpression of or combinations of proneural factors in Müller glia (MG) induce regeneration of functional neurons in the adult mouse retina. Recently, we applied the same strategy in dissociated cultures of fetal human MG and although we stimulated neurogenesis from MG, our effect in 2D cultures was modest and our analysis of newborn neurons was limited.

View Article and Find Full Text PDF

Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a common cause of irreversible blindness following head injury. TON is characterized by axon damage in the optic nerve followed by retinal ganglion cell death in the days and weeks following injury. At present, no therapeutic or surgical approach has been found to offer any benefit beyond observation alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!