A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maximizing ammonium nitrogen removal from solution using different zeolites. | LitMetric

Maximizing ammonium nitrogen removal from solution using different zeolites.

J Environ Qual

Dep. of Plant and Soil Science, Oklahoma State Univ., 367 Agricultural Hall, Stillwater, OK, 47078-1020, USA.

Published: October 2010

Zeolite minerals are ideal for removing ammonium nitrogen (NH4(+)-N) from animal wastes, leachates, and industrial effluents. The objectives of this study were to compare NH4+ removal and kinetics among several commercially available zeolites under various conditions and determine if calorimetry could provide information regarding kinetics of NH4+ removal. Ammonium sorption onto potassium (K) saturated zeolites was compared using synthetic vs. natural swine effluent and with either traditional batch-shaken system or a "tea bag" approach in which zeolites were contained in a mesh sack and suspended in a solution of swine effluent. Ammonium sorption was measured at four retention times using a flow-through system, and the resulting heat response was measured using isothermal calorimetry. Ammonium removal was not significantly different in synthetic vs. natural swine effluent. Ammonium removal was lower in batch-stirred compared to batch-shaken systems, suggesting that diffusion between particles was rate-limiting in the former system. Flow-through cells possessing contact times > 100 s displayed greater NH4+ sorption than batch systems, suggesting that maintaining high NH4+ concentration in solution, removal of exchange products, and sufficient reaction time are critical to maximizing NH4+ removal by zeolites. Within 100 s after NH4+ addition, endothermic heat responses indicated that NH4(+)-K+ exchange had peaked; this was followed by significant heat rate reduction for 50 min. This confirmed findings of an initial fast NH4(+)-K+ exchange followed by a slower one and suggests the 100-s period of rapid reaction is an indicator of the minimum flow through retention time required to optimize NH4+ sorption to zeolites used in this study.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2009.0324DOI Listing

Publication Analysis

Top Keywords

nh4+ removal
12
swine effluent
12
ammonium nitrogen
8
ammonium sorption
8
synthetic natural
8
natural swine
8
effluent ammonium
8
ammonium removal
8
systems suggesting
8
nh4+ sorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!