Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils.

J Environ Qual

Earth System Science Research Center, Geographic Institute, Professorship of Soil Geography/Soil Science, Johannes Gutenberg Univ. Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany.

Published: October 2010

Although polycyclic aromatic hydrocarbons (PAHs) have been extensively studied, the knowledge of their oxygen-containing derivatives and metabolites (OPAHs) in soils is limited. We modified and tested an existing analytical protocol involving pressurized liquid extraction of soil followed by fractionation of target compounds into PAHs and OPAHs on a silica gel column and gas chromatography/ mass spectrometry-based separation and quantification. Polycyclic aromatic hydrocarbons and carbonyl-OPAHs were quantified directly after separation on silica gel columns, and hydroxyl/carboxyl-OPAHs were quantified after silylation with N,O-bis(trimethylsilyl)trifluoroacetamide. Recoveries between 78 and 97% (relative standard deviation [RSD], 5-12%) were obtained for six carbonyl-OPAHs, whereas 1,2-acenaphthenequinone and 1,4-naphthoquinone showed lower recoveries of 34 and 44% (RSD, 19 and 28%, respectively). Five hydroxyl/carboxyl-OPAHs had recoveries between 36 and 70% (RSD, 13-46%), six others had between 2 and 7% (RSD, 8-25%), and nine were lost in sample preparation. Limits of detection ranged from 0.1 to 1.6 ng g(-1) for OPAHs and from 0.01 to 0.56 ng g(-1) for PAHs. The protocol was applied to soils from a former gasworks site, Berlin, an urban soil from Mainz, both in Germany, and a forest soil from near Manaus, Brazil. The sums of 34 PAH concentrations were 107,000, 3505, and 21 ng g(-1); those of seven carbonyl-OPAHs were 15,690, 170, and 7 ng g(-1); and those of 11 hydroxyl/carboxyl-OPAHs 518, 36, and 16 ng g(-1) for Berlin, Mainz, and Manaus soils, respectively. Several OPAHs were present at concentrations higher than or equal to their parent PAHs, demonstrating the importance of OPAH measurement for the assessment of PAH-related environmental risks.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2009.0298DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbons
12
oxygen-containing derivatives
8
derivatives metabolites
8
silica gel
8
g-1
5
analysis polycyclic
4
hydrocarbons oxygen-containing
4
soils
4
metabolites soils
4

Similar Publications

Geographic heterogeneity of polycyclic aromatic hydrocarbons in Yangtze River sediments: Evidence from the longest river in Asia.

Environ Pollut

January 2025

The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

This work is the first comprehensive survey of the Yangtze River, covering its origin to the estuary mouth. It focuses on the geographical and industrial factors influencing the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments, along with their contamination levels, sources, and ecological risks. The total concentrations of PAHs ranged from 2.

View Article and Find Full Text PDF

Asphalt pavement emission behavior under solar radiation during in-service period.

J Hazard Mater

January 2025

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

The toxic fume emitted from asphalt pavement remains a health and environmental hazard towards public safety, especially the emission of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Despite extensive studies focused on characterizing asphalt fumes generated during construction stages (i.e.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Palladium-Catalyzed Modular Synthesis of Thiophene-Fused Polycyclic Aromatics via Sequential C-H Activation.

Org Lett

January 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.

View Article and Find Full Text PDF

Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.

Microlife

January 2025

Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.

Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!