The mechanisms underlying the effects of COX-2 on tumor lymphangiogenesis remain largely undefined. Here, the human lung cancer cell lines A549, 95D, Anip973, and AGZY83-a with different metastatic capacities were investigated by immunostaining, western blotting, and real-time RT-PCR. We observed increased expressions of COX-2 and VEGF-C in the three highly metastatic cell lines compared with the less metastatic AGZY83-a cell line. The COX-2-specific inhibitor Celecoxib suppressed VEGF-C expression whereas the main COX-2 metabolite PGE(2) elevated VEGF-C expression in Anip973 and AGZY83-a cells in positive and negative experiments. To determine the functional link to COX-2 more specifically and elucidate the mechanistic pathway, we used a siRNA to knock down the high COX-2 expression in Anip973 cells and transfected a COX-2 cDNA to enhance the low COX-2 expression in AGZY83-a cells, and then treated the cells with EP1/EP4 agonists or antagonists, respectively. The results revealed that the EP1/EP4 agonists significantly increased VEGF-C production in the COX-2-knockdown Anip973 cells. In contrast, the EP1/EP4 antagonists diminished VEGF-C production in the COX-2-overexpressing AGZY83-a cells. Furthermore, animal models provided evidence that Celecoxib decreased VEGF-C expression, lymphangiogenesis, and lymph node metastases in Anip973 cells, whereas PGE(2) treatment increased the same factors in the parental AGZY83-a cells. A positive correlation between COX-2 and VEGF-C was also confirmed in vivo. The present data suggest that COX-2 regulates VEGF-C expression via the PGE(2) pathway, and that EP1/EP4 receptors are involved in PGE(2)-mediated VEGF-C production. Thus, COX-2 may represent a candidate gene for blocking tumor lymphangiogenesis and lymph node metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.21240DOI Listing

Publication Analysis

Top Keywords

vegf-c expression
16
agzy83-a cells
16
lymphangiogenesis lymph
12
lymph node
12
anip973 cells
12
vegf-c production
12
vegf-c
10
cox-2
10
node metastasis
8
lung cancer
8

Similar Publications

Background: Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis due to late diagnosis and complex molecular mechanisms. Vascular endothelial growth factor C (VEGFC) is associated with angiogenesis and lymphangiogenesis. This study aimed to investigate 's prognostic value in HNSCC and its correlation with immune cell infiltration.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) counts acute kidney injuries (AKI) as one of its many underlying causes. Lymphatic vessels are important in modulating inflammation post-injury. Manipulating lymphatic vessel expansion thus has the potential to alter CKD progression.

View Article and Find Full Text PDF

Background: Secondary lymphedema is a progressive condition caused by lipid- and protein-rich interstitial fluid accumulation resulting from compromised lymphatic function. It commonly occurs in cancer patients following surgical lymph node ablation and radiation treatment. This study aims to elucidate the effects of exercise on the myokine interleukin (IL)-6 and the molecular changes involved in lymphangiogenesis and extracellular matrix (ECM) synthesis using a lymphedema mouse model.

View Article and Find Full Text PDF

Lymphovascular Tumoral Emboli in Inflammatory Breast Cancer Result from Haptotaxis-Mediated Encircling Lymphangiogenesis.

Lymphatics

December 2024

Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli within lymphatics. In a recent study, we observed tumor embolic budding both in vitro and in vivo within lymphovascular spaces and proposed this to account for the plethora of tumor emboli seen in IBC. These observations did not address, however, how lymphovascular invasion is initiated or the mechanisms involved.

View Article and Find Full Text PDF

Background: Patients with lymph node(LN)metastasis-positive Lung adenocarcinoma(LUAD)suffer from a significantly reduced five-year survival rate. Increasing evidence indicates circular RNAs(circRNAs)play crucial roles in regulating cancer progression. However, the specific regulatory mechanisms of circRNAs in the LN metastasis of LUAD have not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!