Facial motor nuclei cell loss with intratemporal facial nerve crush injuries in rats.

Laryngoscope

Department of Otolaryngology-Head and Neck Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA.

Published: November 2010

Objectives/hypothesis: Injuries of cranial nerves that are distal to but near the motor nucleus might result in retrograde motoneuron cell death. The hypothesis of this article is that an intratemporal crush injury of the facial nerve in rats can cause facial motor nuclei cell death.

Study Design: Prospective, randomized, controlled animal study.

Methods: Sprague-Dawley rats were randomly divided into four groups: intratemporal sham, intratemporal crush injury, extratemporal crush injury, and extratemporal sham. The intratemporal (n = 9) and extratemporal crush injury (n = 4) groups underwent a 60-second crush of the nerve at the facial nerve tympanic segment or main facial nerve trunk distal to the stylomastoid foramen, respectively. The intratemporal sham group (n = 4) underwent identical exposure to the intratemporal crush without subsequent injury. Both sham groups and the extratemporal crush group were sacrificed at 4 weeks. The intratemporal crush group was subdivided into 4- (n = 4) and 8-week (n = 5) postinjury groups. Brain sections were stained with thionin and facial motor nuclei were counted under magnification. The contralateral uninjured facial motor nucleus was used to compare motor nucleus cell survival.

Results: Intratemporal crush injury resulted in increased cell loss at 4 (89.43% ± 8.57% standard error of mean) and 8 weeks (85.78% ± 3.15%) after injury compared to sham injury (119.09% ± 13.35%) (P <.05). No significant change in cell survival was noted between the distal crush (103.29% ± 6.34%) and sham group (111.71% ± 3.24%) (P >.05).

Conclusions: A rat intratemporal crush injury resulted in approximately 15% facial motor nuclei cell loss compared to an intratemporal sham injury. An extratemporal crush injury did not lead to any significant facial motor nuclei cell loss. This might have future translational implications in humans with intratemporal facial nerve injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.21077DOI Listing

Publication Analysis

Top Keywords

crush injury
28
facial motor
24
intratemporal crush
24
motor nuclei
20
facial nerve
20
nuclei cell
16
cell loss
16
extratemporal crush
16
intratemporal
12
crush
12

Similar Publications

Background: Open and crushed forearm injury is a complex and rare injury affecting the upper extremity. It results in damage to various structures, including bones, soft tissues, and neurovascular bundles, ultimately leading to functional impairment. Typically, these injuries occur owing to high-energy trauma.

View Article and Find Full Text PDF

Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin.

View Article and Find Full Text PDF

Schwann cells (SCs) are necessary for peripheral nerve regeneration due to their plasticity and trophic supply after sciatic nerve injury (SNI). However, the multiple adaptations of SCs are still poorly understood. This study explored the effects of transient axonal glycoprotein type-1 (TAG-1) on cell migration and neuropilin1 (NRP1) expression in SCs and examined the impact of TAG-1 on nerve regeneration in rats with SNI.

View Article and Find Full Text PDF

Window entrapment trauma in cats: clinical, neurological and clinicopathological findings and outcome (70 cases).

J Feline Med Surg

December 2024

Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Objectives: Window entrapment in cats can lead to reduced blood flow to the spinal cord, muscles and nerves, resulting in ischaemic neuromyelomyopathy. The severity and duration of entrapment greatly influence clinical and neurological outcomes, as well as prognosis. The aim of the present retrospective multicentric study (2005-2022) was to describe clinical, neurological and selected clinicopathological findings, as well as the outcome of cats trapped in bottom-hung windows, presented to both first-opinion and referral-only clinics.

View Article and Find Full Text PDF

Purpose: Crush injuries result from the physical compression of muscles and may lead to crush syndrome. Early fluid resuscitation and surgical intervention is key. Few studies have reported the outcomes of crush injuries in the non-disaster setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!