Electronic structures of Zn(2+) and Cd(2+) thiolate clusters found in metallothioneins (MT) have been obtained using density functional theory. We have found that the inherent asymmetry of cluster architectures gives rise to seven distinct metal sites. Whereas the non-strained bond lengths of such tetrathiolate complexes are found to be 2.60 Å and 2.39 Å for Cd-S and Zn-S, in the MT clusters four characteristic terminal and bridging bonds are observed with average lengths 2.55 Å (Cd-S(t)); 2.35 Å (Zn-S(t)); 2.62 Å (Cd-S(b)); and 2.42 Å (Zn-S(b)). For each stoichiometry of Zn(2+) and Cd(2+), all possible isomers have been characterized and ranked according to relative free energy and metal ion selectivity. The most stable distribution at low Cd(2+) concentration is computed to be Zn(4) + CdZn(2), whereas at 2 : 1 Cd(2+) : Zn(2+) concentration, only heteroclusters are thermodynamically stable, explaining experimental data. The presence of two different clusters in MTs must and can be rationalized already in their intrinsic differences. The results indicate that the asymmetry allows for Zn(2+) transfer to various molecular targets having different thresholds for Zn(2+) binding, while maintaining detoxification sites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0dt00087fDOI Listing

Publication Analysis

Top Keywords

zn2+ cd2+
12
zn2+
5
building blocks
4
blocks metallothioneins
4
metallothioneins heterometallic
4
heterometallic zn2+
4
cd2+
4
clusters
4
cd2+ clusters
4
clusters first-principles
4

Similar Publications

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

Comput Struct Biotechnol J

December 2024

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.

View Article and Find Full Text PDF

Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!