We report new experimental results on the spectral, thermal, and orientational characteristics of stoichiometry-dependent mid-IR absorption in AgGaSe(2) crystals. In currently available material, this absorption poses an obstacle to the power scaling of the 2-µm-pumped AgGaSe(2) optical parametric oscillator (OPO). Preliminary experiments have indicated that this absorption could be substantially reduced by optimization of the process parameters during crystal growth and annealing. OPO output powers approaching 10 W may be achievable by using optimized material.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.32.003948DOI Listing

Publication Analysis

Top Keywords

mid-ir absorption
8
absorption aggase2
8
aggase2 optical
8
optical parametric
8
parametric oscillator
8
oscillator crystals
4
crystals report
4
report experimental
4
experimental spectral
4
spectral thermal
4

Similar Publications

Most molecules and dielectric materials have characteristic bond vibrations or phonon modes in the mid-infrared regime. However, infrared absorption spectroscopy lacks the sensitivity for detecting trace analytes due to the low quantum efficiency of infrared sensors. Here, we report mid-infrared photothermal plasmonic scattering (MIP-PS) spectroscopy to push the infrared detection limit toward nearly a hundred molecules in a plasmonic nanocavity.

View Article and Find Full Text PDF

Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments.

View Article and Find Full Text PDF

Dual-tube MEMS-based spectrophone for sub-ppb mid-IR photoacoustic gas detection.

Photoacoustics

December 2024

ASI Agenzia Spaziale Italiana - Centro di Geodesia Spaziale, Località Terlecchia, Matera, 75100, Italy.

Nowadays, the scientific community and industry are increasingly pressed to provide solutions for developing compact and highly-performing trace-gas sensors for several applications of crucial importance, such as environmental monitoring or medical diagnostics. In this context, this work describes a novel configuration, making use of a mid-IR spectrophone combining the compactness of a photo-acoustic setup, a non-conventional micro-electro-mechanical (MEMS) acousto-to-voltage transducer, and the sensitivity enhancement given by a cost-effective and easy-to-build dual-tube resonator configuration. In the optimal condition of sample pressure, the system developed in this work can achieve a minimum detection limit (MDL) equal to 0.

View Article and Find Full Text PDF

Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing.

View Article and Find Full Text PDF
Article Synopsis
  • - Laser-based mid-IR photothermal spectroscopy (PTS) is a rapid and sensitive analytical method that utilizes advanced laser technology to capture the absorption characteristics of various materials, such as liquids or solids.
  • - This study utilizes an external cavity quantum cascade laser (EC-QCL) to analyze a thin film of polymethyl methacrylate (PMMA) on a silicon nitride micro-ring resonator, demonstrating its effectiveness in creating an on-chip photothermal sensor.
  • - The research highlights the optimal alignment and focusing techniques for the laser setup, showing that PTS can lead to compact, efficient sensors suitable for real-time monitoring in industrial applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!