The notion that telomeres are essential for chromosome linearity stems from the existence of two chief dangers: inappropriate DNA damage response (DDR) reactions that mistake natural chromosome ends for double-strand DNA breaks (DSBs), and the progressive loss of DNA from chromosomal termini due to the end replication problem. Telomeres avert the former peril by binding sequence-specific end-protection factors that control the access of DDR activities. The latter threat is tackled by recruiting telomerase, a reverse transcriptase that uses an integral RNA subunit to template the addition of telomere repeats to chromosome ends. Here we describe an alternative mode of linear chromosome maintenance in which canonical telomeres are superseded by blocks of heterochromatin. We show that in the absence of telomerase, Schizosaccharomyces pombe cells can survive telomere sequence loss by continually amplifying and rearranging heterochromatic sequences. Because the heterochromatin assembly machinery is required for this survival mode, we have termed it 'HAATI' (heterochromatin amplification-mediated and telomerase-independent). HAATI uses the canonical end-protection protein Pot1 (ref. 4) and its interacting partner Ccq1 (ref. 5) to preserve chromosome linearity. The data suggest a model in which Ccq1 is recruited by the amplified heterochromatin and provides an anchor for Pot1, which accomplishes its end-protection function in the absence of its cognate DNA-binding sequence. HAATI resembles the chromosome end-maintenance strategy found in Drosophila melanogaster, which lacks specific telomere sequences but nonetheless assembles terminal heterochromatin structures that recruit end-protection factors. These findings reveal a previously unrecognized mode by which cancer cells might escape the requirement for telomerase activation, and offer a tool for studying genomes that sustain unusually high levels of heterochromatinization.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature09374DOI Listing

Publication Analysis

Top Keywords

canonical telomeres
8
chromosome linearity
8
chromosome ends
8
end-protection factors
8
heterochromatin
6
chromosome
6
haati survivors
4
survivors replace
4
replace canonical
4
telomeres
4

Similar Publications

Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.

View Article and Find Full Text PDF

In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX.

View Article and Find Full Text PDF

CGC1, a new reference genome for .

bioRxiv

December 2024

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan.

The original 100.3 Mb reference genome for , generated from the wild-type laboratory strain N2, has been crucial for analysis of since 1998 and has been considered complete since 2005. Unexpectedly, this long-standing reference was shown to be incomplete in 2019 by a genome assembly from the N2-derived strain VC2010.

View Article and Find Full Text PDF

Except for telomeres, G4 DNA structures in the human genome can be formed only within the context of double-stranded DNA. DNA duplexes flanking the G4 structure may potentially affect the G4 architecture and the binding of G4-specific ligands. Here, we examine the interaction of TMPyP4, NMM, and PDS ligands with three structures formed by the same DNA fragment containing the (GGGT) sequence: the G4 in duplex (dsG4), G4 in single-stranded DNA (ssG4) and perfect duplex DNA (ds).

View Article and Find Full Text PDF

5-Fluoro-2'-deoxyuridine as an efficient F NMR reporter for G-quadruplex and i-motif structures.

Bioorg Med Chem Lett

December 2024

Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India. Electronic address:

DNA sequences that are composed of multiple G- and C-tracts can potentially form non-canonical structures called G-quadruplex (GQ) or i-motif (iM), respectively. Such sequences are found at the ends of chromosomes (telomeric repeats) and in the promoter region of several genes that cause cancer. Despite extensive studies, distinguishing different GQ and iM topologies is not easy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!