Background: Docosahexaenoic acid (DHA, 22:6ω3) is a fundamental component of cell membranes, especially in the brain and retina. In the experimental animal, DHA deficiency leads to suboptimal neurological performance and visual deficiencies. Children with the Zellweger syndrome (ZS) have a profound DHA deficiency and symptoms that can be attributed to their extremely low DHA levels. These children seem to have a metabolic defect in DHA biosynthesis, which has never been totally elucidated. Treatment with DHA ethyl ester greatly improves these patients, but if we could normalize their endogenous DHA production we could get additional benefits. We examined whether DHA biosynthesis by Δ4-desaturation could be enhanced in the human species by transfecting the enzyme, and if this could normalize the DHA levels in cells from ZS patients.
Results: We showed that the Δ4-desaturase gene (Fad4) from Thraustochytrium sp, which can be expressed by heterologous transfection in other plant and yeast cells, can also be transfected into human lymphocytes, and that it expresses the enzyme (FAD4, Δ4-desaturase) by producing DHA from direct Δ4-desaturation of 22:5ω3. We also found that the other substrate for Δ4-desaturase, 22:4ω6, was parallely desaturated to 22:5ω6.
Conclusions: The present "in vitro" study demonstrates that Δ4-desaturase can be transfected into human cells and synthesize DHA (as well as 22:5ω6, DPA) from 22:5ω3 and 22:4ω6, respectively, by putative Δ4-desaturation. Even if this pathway may not be the physiological route for DHA biosynthesis "in vivo", the present study opens new perspectives for the treatment of patients within the ZS spectrum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949860 | PMC |
http://dx.doi.org/10.1186/1476-511X-9-98 | DOI Listing |
Comp Biochem Physiol B Biochem Mol Biol
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO).
View Article and Find Full Text PDFJ Nutr
December 2024
Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Pregnancies complicated by maternal obesity are characterized by metabolic differences affecting placental nutrient transport and fetal development. Docosahexaenoic acid (DHA) is critical for fetal brain development and is primarily incorporated into phosphatidylcholine (PC). Recent evidence suggests choline may enhance PC-DHA synthesis; however, data on the impact of maternal plasma choline on placental phospholipid DHA content in females with obesity are limited.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States.
Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.
View Article and Find Full Text PDFChondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!