Large-scale comparison of four binding site detection algorithms.

J Chem Inf Model

Sanofi-Aventis VA Research Centre, Structure Design & Informatics, 13 quai Jules Guesde, BP14, 94403 Vitry-sur-Seine, France.

Published: December 2010

A large-scale evaluation and comparison of four cavity detection algorithms was carried out. The algorithms SiteFinder, fpocket, PocketFinder, and SiteMap were evaluated on a protein test set containing 5416 protein-ligand complexes and 9900 apo forms, corresponding to a subset of the set used earlier for benchmarking the PocketFinder algorithm. For the holo structures, all four algorithms correctly identified a similar amount of pockets (around 95%). SiteFinder, using optimized parameters, SiteMap, and fpocket showed similar pocket ranking performance, which was defined by ranking the correct binding site on rank 1 of the predictions or within the first 5 ranks of the predictions. On the apo structures, PocketFinder especially and also SiteFinder (optimized parameters) performed best, identifying 96% and 84% of all binding sites, respectively. The fpocket program predicts binding sites most accurately among the algorithms evaluated here. SiteFinder needed an average calculation time of 1.6 s compared with 2 min for SiteMap and around 2 s for fpocket.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci1000289DOI Listing

Publication Analysis

Top Keywords

binding site
8
detection algorithms
8
sitefinder optimized
8
optimized parameters
8
sitemap fpocket
8
binding sites
8
algorithms
5
large-scale comparison
4
binding
4
comparison binding
4

Similar Publications

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

Cooperative Anion-π Catalysis with Chiral Molecular Cages toward Enantioselective Desymmetrization of Anhydrides.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Exploiting novel noncovalent interactions for catalysis design represents a fascinating direction. For the flexible and relatively weak anion-π interactions, manipulation of two or more π-acidic surfaces for cooperative activation is highly desirable. Here, we demonstrate the strategy of cooperative anion-π catalysis based on chiral molecular cages with V-shaped electron-deficient cavities for synergic binding and activation of dicarbonyl electrophiles toward highly enantioselective desymmetrization transformation.

View Article and Find Full Text PDF

FOXA1 activates NOLC1 transcription through NOTCH pathway to promote cell stemness in lung adenocarcinoma.

Kaohsiung J Med Sci

January 2025

Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.

Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!