Purpose: To demonstrate that dynamic MRI is a useful tool in complex strabismus patients.

Subjects And Methods: 16 patients were referred to us with suspicion of slipped or '"lost" medial rectus (MR), 15 after strabismus surgery. 1 case with lost MR after trauma. One patient had "A" pattern exotropia with over depression in adduction. 8 underwent dynamic MRI examination.

Results: The dynamic MRI showed the precise muscle location and the contractility of the muscle. All patients underwent surgery, according to deviation and ocular motility changes. All slipped muscles were found and re-attached to the globe. In the "A" pattern exotropia MRI showed superior displacement of the LR pulleys. The inferior rectus did not demonstrate contractility and a transfer procedure was made.

Conclusions: MRI is an index of functional muscle contractility and precise muscle location. It should be considered in complex cases of strabismus as an important argument in choosing the surgical technique.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dynamic mri
12
"a" pattern
8
pattern exotropia
8
precise muscle
8
muscle location
8
mri
5
[dynamic nuclear
4
nuclear magnetic
4
magnetic resonance
4
resonance strabismus]
4

Similar Publications

Purpose: To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).

Materials And Methods: Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups.

View Article and Find Full Text PDF

Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.

View Article and Find Full Text PDF

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Development of Effective Connectome from Infancy to Adolescence.

Med Image Comput Comput Assist Interv

October 2024

Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA.

Delineating the normative developmental profile of functional connectome is important for both standardized assessment of individual growth and early detection of diseases. However, functional connectome has been mostly studied using functional connectivity (FC), where undirected connectivity strengths are estimated from statistical correlation of resting-state functional MRI (rs-fMRI) signals. To address this limitation, we applied regression dynamic causal modeling (rDCM) to delineate the developmental trajectories of effective connectivity (EC), the directed causal influence among neuronal populations, in whole-brain networks from infancy to adolescence (0-22 years old) based on high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human Connectome Project Development (HCP-D).

View Article and Find Full Text PDF

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!