AI Article Synopsis

  • There is a clinical need for artificial bone materials, and new composites made from poly(L-lactic acid) (PLLA) have been developed to address this.
  • Adding bone morphogenetic protein-2 (BMP-2) enhances the bone response of these materials, but BMP-2 tends to quickly diffuse away from the implantation site.
  • The study tested radiolabelled BMP-2 loaded onto plain PLLA and composite PLLA-CNT-µHA scaffolds in rats, finding that both scaffold types released BMP-2 in a similar pattern, and the bioactivity of BMP-2 remained unchanged.

Article Abstract

There is an evident clinical need for artificial bone restorative materials. In this respect, novel composites based on poly(L-lactic acid) (PLLA) have been described. The bone response of such polymer-based composites is usually improved by the addition of bone morphogenetic protein-2 (BMP-2). However, released BMP-2 is cleared almost immediately from the site of implantation by diffusion, whereas a prolonged retention of BMP-2 onto the scaffold has been suggested to be more favourable. Besides the ability to improve the mechanical strength and osteoconductivity of polymeric scaffolds, both carbon nanotubes (CNTs) and microhydroxyapatite (µHA) have been described to facilitate such retention of BMP-2 when incorporated into a composite scaffold. Therefore, in the current study, radiolabelled BMP-2 was loaded onto plain PLLA and composite PLLA-CNT-µHA scaffolds. Subsequently, the scaffolds were implanted subcutaneously for 5 weeks in rats and BMP-2 release was measured. Release started with an initial phase of quick release, followed by a gradual release of BMP-2. Both scaffold types comprised the same in vivo release properties for BMP-2. The bioactivity of the BMP-2 remained unaltered. It can be concluded that incorporated CNTs and µHA did not affect BMP-2 release from composite scaffold materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.339DOI Listing

Publication Analysis

Top Keywords

bmp-2
10
retention bmp-2
8
bmp-2 scaffold
8
composite scaffold
8
bmp-2 release
8
release
7
nanotubes apatite
4
apatite growth
4
growth factor
4
factor release
4

Similar Publications

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Background: The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate.

Purpose: To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Correction: Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects.

J Nanobiotechnology

January 2025

Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!