Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Localizing the binding sites of regulatory proteins is becoming increasingly feasible and accurate. This is due to dramatic progress not only in chromatin immunoprecipitation combined by next-generation sequencing (ChIP-seq) but also in advanced statistical analyses. A fundamental issue, however, is the alarming number of false positive predictions. This problem can be remedied by improved peak calling methods of twin peaks, one at each strand of the DNA, kernel density estimators, and false discovery rate estimations based on control libraries. Predictions are filtered by de novo motif discovery in the peak environments. These methods have been implemented in, among others, Valouev et al.'s Quantitative Enrichment of Sequence Tags (QuEST) software tool. We demonstrate the prediction of the human growth-associated binding protein (GABPalpha) based on ChIP-seq observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-854-6_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!