A multilevel Lab on chip platform for DNA analysis.

Biomed Microdevices

Xlab-Materials and Microsystems Laboratory, Department of Material Science and Chemical Engineering, Politecnico di Torino-Latemar Unit, Via Lungo Piazza d'Armi 6, 10034 Chivasso, Turin, Italy.

Published: February 2011

Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-010-9467-5DOI Listing

Publication Analysis

Top Keywords

microarray glass
8
multilevel lab
4
lab chip
4
chip platform
4
platform dna
4
dna analysis
4
analysis lab-on-chips
4
lab-on-chips locs
4
locs critical
4
critical systems
4

Similar Publications

Development of multiple genome-wide proteome microarrays comprised wafer substrate-based chip and its scanner: An advanced high-throughput and sensitivity for molecular interactions studies.

Biosens Bioelectron

December 2024

Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:

Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.

View Article and Find Full Text PDF

Concave Magnetic-Responsive Hydrogel Discs for Enhanced Bioassays.

Biosensors (Basel)

December 2024

School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.

Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.

View Article and Find Full Text PDF

Introduction: Placental-derived extracellular vesicles (EVs) are nano-organelles that facilitate intercellular communication between the feto-placental unit and the mother. We evaluated a novel Multiple Microarray analyzer for identifying surface markers on plasma EVs that predict preterm delivery and preeclampsia compared to term delivery controls.

Material And Methods: In this prospective exploratory cohort study pregnant women between 24 and 40 gestational weeks with preterm delivery (n = 16), preeclampsia (n = 19), and matched term delivery controls (n = 15) were recruited from Bnai Zion Medical Center, Haifa, Israel.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by symptoms such as memory loss and impaired learning. This study conducted a cross-transcriptomic analysis of AD using existing microarray datasets from the hippocampus (HC) and entorhinal cortex (EC), comparing them with age-matched non-AD controls. Both of these brain regions are critical for learning and memory processing and are vulnerable areas that exhibit abnormalities in early AD.

View Article and Find Full Text PDF

Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology.

Adv Healthc Mater

January 2025

Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!