A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry. | LitMetric

Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015188PMC
http://dx.doi.org/10.1007/s00442-010-1753-7DOI Listing

Publication Analysis

Top Keywords

decomposition rates
12
fynbos biome
12
rates fynbos
8
south africa
8
plant species
8
litter
5
variation decomposition
4
fynbos
4
biome south
4
africa role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!