The Ca(2+)-sensing receptor (CaSR) is a member of family C of the GPCRs responsible for sensing extracellular Ca(2+) ([Ca(2+)](o)) levels, maintaining extracellular Ca(2+) homeostasis, and transducing Ca(2+) signaling from the extracellular milieu to the intracellular environment. In the present study, we have demonstrated a Ca(2+)-dependent, stoichiometric interaction between CaM and a CaM-binding domain (CaMBD) located within the C terminus of CaSR (residues 871-898). Our studies suggest a wrapping around 1-14-like mode of interaction that involves global conformational changes in both lobes of CaM with concomitant formation of a helical structure in the CaMBD. More importantly, the Ca(2+)-dependent association between CaM and the C terminus of CaSR is critical for maintaining proper responsiveness of intracellular Ca(2+) responses to changes in extracellular Ca(2+) and regulating cell surface expression of the receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975215 | PMC |
http://dx.doi.org/10.1074/jbc.M110.147918 | DOI Listing |
Plants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China Normal University, Dept. of Chemistry, Dongchuan Road 500, 200062, Shanghai, CHINA.
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America.
Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.
View Article and Find Full Text PDFJCI Insight
January 2025
Center for Precision Medicine, Department of Medicine, and.
The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!