Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
LOV domains function as blue light-sensing modules in various photoreceptors in plants, fungi, algae, and bacteria. A LOV/LOV protein (LLP) has been found from Arabidopsis thaliana (AtLLP) as a two LOV domain-containing protein. However, its function remains unknown. We isolated cDNA clones coding for an LLP homolog from tomato (Solanum lycopersicum) and two homologs from the moss Physcomitrella patens. The tomato LLP (SlLLP) contains two LOV domains (LOV1 and LOV2 domains), as in AtLLP. Most of the amino acids required for association with chromophore are conserved in both LOV domains, except that the amino acid at the position equivalent to the cysteine essential for cysteinyl adduct formation is glycine in the LOV1 domain as in AtLLP. When expressed in Escherichia coli, SlLLP binds FMN and undergoes a self-contained photocycle upon irradiation of blue light. Analyses using mutant SlLLPs revealed that SlLLP binds FMN in both LOV domains, although the LOV1 domain does not show spectral changes on irradiation. However, when Gly(66) in the LOV1 domain, which is located at the position equivalent to the essential cysteine of LOV domains, is replaced by cysteine, the mutated LOV1 domain shows light-induced spectral changes. In addition, all four LOV domains of P. patens LLPs (PpLLP1 and PpLLP2) show the typical features of LOV domains, including the reactive cysteine in each. This study shows that plants have a new LOV domain-containing protein family with the typical biochemical and photochemical properties of other LOV domain-containing proteins such as the phototropins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966092 | PMC |
http://dx.doi.org/10.1074/jbc.M110.145367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!