A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pseudorevertants of a Semliki forest virus fusion-blocking mutation reveal a critical interchain interaction in the core trimer. | LitMetric

Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells by a low-pH-triggered membrane fusion reaction mediated by the viral E1 protein. E1 inserts into target membranes and refolds to a hairpin-like homotrimer containing a central core trimer and an outer layer composed of domain III and the juxtamembrane stem region. The key residues involved in mediating E1 trimerization are not well understood. We recently showed that aspartate 188 in the interface of the core trimer plays a critical role. Substitution with lysine (D188K) blocks formation of the core trimer and E1 trimerization and strongly inhibits virus fusion and infection. Here, we have isolated and characterized revertants that rescued the fusion and growth defects of D188K. These revertants included pseudorevertants containing acidic or polar neutral residues at E1 position 188 and a second-site revertant containing an E1 K176T mutation. Computational analysis using multiconformation continuum electrostatics revealed an important interaction bridging D188 of one chain with K176 of the adjacent chain in the core trimer. E1 K176 is completely conserved among the alphaviruses, and mutations of K176 to threonine (K176T) or isoleucine (K176I) produced similar fusion phenotypes as D188 mutants. Together, our data support a model in which a ring of three salt bridges formed by D188 and K176 stabilize the core trimer, a key intermediate of the alphavirus fusion protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977855PMC
http://dx.doi.org/10.1128/JVI.01625-10DOI Listing

Publication Analysis

Top Keywords

core trimer
24
semliki forest
8
forest virus
8
core
6
trimer
6
fusion
5
pseudorevertants semliki
4
virus fusion-blocking
4
fusion-blocking mutation
4
mutation reveal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!