Wnt proteins are secreted post-translationally modified proteins that signal locally to regulate development and proliferation. The production of bioactive Wnts requires a number of dedicated factors in the secreting cell whose coordinated functions are not fully understood. A screen for small molecules identified inhibitors of vacuolar acidification as potent inhibitors of Wnt secretion. Inhibition of the V-ATPase or disruption of vacuolar pH gradients by diverse drugs potently inhibited Wnt/β-catenin signaling both in cultured human cells and in vivo, and impaired Wnt-regulated convergent extension movements in Xenopus embryos. WNT secretion requires its binding to the carrier protein wntless (WLS); we find that WLS is ER-resident in human cells and WNT3A binding to WLS requires PORCN-dependent lipid modification of WNT3A at serine 209. Inhibition of vacuolar acidification results in accumulation of the WNT3A-WLS complex both in cells and at the plasma membrane. Modeling predictions suggest that WLS has a lipid-binding β-barrel that is similar to the lipocalin-family fold. We propose that WLS binds Wnts in part through a lipid-binding domain, and that vacuolar acidification is required to release palmitoylated WNT3A from WLS in secretory vesicles, possibly to facilitate transfer of WNT3A to a soluble carrier protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939803PMC
http://dx.doi.org/10.1242/jcs.072132DOI Listing

Publication Analysis

Top Keywords

vacuolar acidification
16
wnt secretion
8
human cells
8
carrier protein
8
wls
6
wnt3a
5
vacuolar
5
wls-dependent secretion
4
secretion wnt3a
4
requires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!