The effects of sewage sludge on soil quality with regard to its nutrient and heavy metal content, microbial community structure and ability to maintain specific soil function (degradation of herbicide glyphosate) were investigated in a three months study using an alluvial soil (Eutric Fluvisol). Dehydrated sewage sludge significantly increased soil organic matter (up to 20.6% of initial content), total and available forms of N (up to 33% and 220% of initial amount, respectively), as well as total and plant available forms of P (up to 11% and 170% of initial amount, respectively) and K (up to 70% and 47% of initial amount, respectively) in the upper 2 cm soil layer. The increase of organic matter was most prominent 3d after the application of sewage sludge, after 3 months it was no longer significant. Contents of nutrients kept to be significantly higher in the sewage sludge treated soil till the end of experiment. Contents of some heavy metals (Zn, Cu, Pb) increased as well. The highest increase was found for Zn (up to 53% of initial amount), however it was strongly bound to soil particles and its total content was kept below the maximum permissible limit for agricultural soil. Based on molecular fingerprinting of bacterial 16S rRNA gene and fungal ITS fragment on 3rd day and 3rd month after sewage sludge amendment, significant short term effects on bacterial and fungal communities were shown due to the sewage sludge. The effects were more pronounced and more long-term for bacterial than fungal communities. The mineralization of (14)C-glyphosate in the sewage sludge soil was 55.6% higher than in the control which can be linked to (i) a higher glyphosate bioavailability in sewage sludge soil, which was triggered by the pre-sorption of phosphate originating from the sewage sludge and/or (ii) beneficial alterations of the sewage sludge to the physical-chemical characteristics of the soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2010.08.024 | DOI Listing |
Microb Pathog
January 2025
Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.
View Article and Find Full Text PDFPathogens
January 2025
Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland.
Despite the vast amount of water on Earth, only a small percent is suitable for consumption, and these resources are diminishing. Moreover, water resources are unevenly distributed, leading to significant disparities in access to drinking water between countries and populations. Increasing consumption and the expanding human population necessitate the development of novel wastewater treatment technologies and the use of water treatment byproducts in other areas, such as fertilisers.
View Article and Find Full Text PDFInsects
December 2024
Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates.
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.
Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!