Preparing electronically excited trans-stilbene molecules in deuterated chloroform using both one-photon excitation and excitation through an intermediate vibrational state explores the influence of vibrational energy on excited-state isomerization in solution. After infrared excitation of either two quanta of C-H stretch vibration |2ν(CH)> at 5990 cm(-1) or the C-H stretch-bend combination |ν(CH) + ν(bend)> at 4650 cm(-1) in the ground electronic state, an ultraviolet photon intercepts the vibrationally excited molecules during the course of vibrational energy flow and promotes them to the electronically excited state. The energy of the infrared and ultraviolet photons together is the same as that added in the one-photon excitation. Transient broadband-continuum absorption monitors the lifetime of electronically excited molecules. The lifetime of excited-state trans-stilbene after one-photon electronic excitation with 33,300 cm(-1) of energy is (51 +/- 6) ps. The excited-state lifetimes of (55 +/- 9) ps and (56 +/- 7) ps for the cases of excitation through |2ν(CH)> and |ν(CH) + ν(bend)>, respectively, are indistinguishable from that for the one-photon excitation. Vibrational relaxation in the electronically excited state prepared by the two-photon excitation scheme is most likely faster than the barrier crossing, making the isomerization insensitive to the method of initial state preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp102752fDOI Listing

Publication Analysis

Top Keywords

electronically excited
16
one-photon excitation
12
excitation
9
influence vibrational
8
vibrational energy
8
|νch νbend>
8
excited molecules
8
excited state
8
excited
5
state
5

Similar Publications

The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!