In order to identify the characteristics of the plasmids of degrading bacterial strains and the relationship between the plasmids' function and biodegradation, plasmids were isolated from two bacterial strains (Paracoccus sp. BW001 and Shinella zoogloeoides BC026) and pulse-field gel electrophoresis was used to identify the distribution of plasmids and their molecular size. Two large plasmids with 190-245 kb and one small plasmid with 4.5-5.0 kb were found in the BW001, and at least 3 large plasmids over 200 kb were harbored in the BC026. The plasmid curing was conducted by high temperature-SDS method and the results indicated the biodegradation genes might locate in the plasmids of two bacterial strains. After transforming the plasmids of BW001 into E. coli 5alpha by electroporation, the new bacterial strain could tolerate pyridine.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America.
Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
Lactic acid bacteria (LAB) are usually freeze-dried into powder for transportation and storage, with the bacterial membrane playing a crucial role in this process. However, different strains exhibit different levels of freeze-drying resistance in their cell membranes. In this study, () strains 1F20, K56, and J5, demonstrating survival rates of 59.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Bio Health Science, Changwon National University, Changwon, Gyeongnam 51140, Republic of Korea.
Five pink-pigmented bacterial strains, isolated from human skin and classified within the genus , were examined. Among them, four were identified as , while strain OT10 was deemed to be a potential novel species. Strain OT10 exhibited characteristics, such as Gram-stain-negative, oxidase positive, motile, strictly aerobic and rod shaped.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.
A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!