The half reactions of ω-aminotransferase (ω-AT) from Vibrio fluvialis JS17 (ω-ATVf) were carried out using purified pyridoxal 5'-phosphate-enzyme (PLP-Enz) and pyridoxamine 5'-phosphate-enzyme (PMP-Enz) complexes to investigate the relative activities of substrates. In the reaction generating PMP-Enz from PLP-Enz using L-alanine as an amine donor, L-alanine showed about 70% of the initial reaction rate of (S)-α-methylbenzylamine ((S)-α-MBA). However, in the subsequent half reaction recycling PLP-Enz from PMP-Enz using acetophenone as an amine acceptor, acetophenone showed nearly negligible reactivity compared to pyruvate. These results indicate that the main bottleneck in the asymmetric synthesis of (S)-α-MBA lies not in the amination of PLP by alanine, but in the amination of acetophenone by PMP-Enz, where conformational restraints of the enzyme structure is likely to be the main reason for limiting the amine group transfer from PMP-Enz to acetophenone. Based upon those half reaction experiments using the two amino acceptors of different activity, it appears that the relative activities of the two amine donors and the two acceptors involved in the ω-AT reactions can roughly determine the asymmetric synthesis yield of the target chiral amine compound. Predicted conversion yields of several target chiral amines were calculated and compared with the experimental conversion yields. Approximately, a positive linear correlation (Pearson's correlation coefficient = 0.92) was observed between the calculated values and the experimental conversion yields. To overcome the low (S)-α-MBA productivity of ω-ATVf caused by the possible disadvantageous structural constraints for acetophenone, new ω-ATs showing higher affinity to benzene ring of acetophenone than ω-ATVf were computationally screened using comparative modeling and protein-ligand docking. ω-ATs from Streptomyces avermitilis MA-4680 (SAV2612) and Agrobacterium tumefaciens str. C58 (Atu4761) were selected, and the two screened ω-ATs showed higher asymmetric synthesis reaction rate of (S)-α-MBA and lower (S)-α-MBA degradation reaction rate than ω-ATVf. To verify the higher conversion yield of the variants of ω-ATs, the reaction with 50 mM acetophenone and 50 mM alanine was performed with coupling of lactate dehydrogenase and two-phase reaction system. SAV2612 and Atu4761 showed 70% and 59% enhanced yield in the synthesis of (S)-α-MBA compared to that of ω-ATVf, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22930DOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
16
reaction rate
12
conversion yields
12
chiral amines
8
relative activities
8
reaction
8
half reaction
8
pmp-enz acetophenone
8
synthesis s-α-mba
8
target chiral
8

Similar Publications

Background: Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors.

Methods: Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity.

View Article and Find Full Text PDF

Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.

View Article and Find Full Text PDF

The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.

View Article and Find Full Text PDF

Squaramide-Catalyzed Asymmetric Mannich/Hemiketalization Retro-Henry Cascade Reaction of -Hydroxy-α-Aminosulfones with α-Nitroketones.

J Org Chem

January 2025

Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

A concise and efficient asymmetric Mannich/hemiketalization/retro-Henry cascade reaction between -hydroxy-α-aminosulfones and α-nitroketones was developed by utilizing a cinchona-derived bifunctional squaramide catalyst. This methodology provided access to β-nitro-substituted amino compounds with up to 95% yield and >99% ee. The practicality was demonstrated by scale-up and diverse derivatizations, including the synthesis of imidazolidinone and amino acid analogs.

View Article and Find Full Text PDF

Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!