Surface topography modulates macrophage expression of pro-inflammatory cytokines through triggering of a number of different signaling pathways. In this article, we investigated the early activation of the NFκB pathway in RAW 264.7 macrophages in response to four surface topographies: mechanically polished (PO), coarse sand blasted (CB), acid etched (AE), and sandblasted and acid etched (SLA). We found that activation of the NFκB pathway was topography dependent. The PO and CB surfaces showed the highest level of activation, followed by the AE, then the SLA. Addition of suboptimal stimulatory concentrations of lipopolysaccharide (LPS) enhanced the response. Second, we determined that topography dependent cell signaling occurred in the absence of fetal bovine sera in the media. Third, we demonstrated that disruption of the lipid rafts by removal of cholesterol from cells in suspension using methyl β cyclodextrin (MβCD) affected signaling through the NFκB pathway and transcription of the pro-inflammatory cytokine IL-1 β, but did not affect cell adhesion, spreading or morphology. The number of macrophages adhered to the surfaces after 30 min followed the order PO, CB, AE, and SLA. In conclusion, our study suggests that one mechanism by which surface topography modulates activation of the NFκB pathway is through cholesterol-enriched raft-associated adhesive/signaling structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!