Background: Sale of organic foods is one of the fastest growing market segments within the global food industry. People often buy organic food because they believe organic farms produce more nutritious and better tasting food from healthier soils. Here we tested if there are significant differences in fruit and soil quality from 13 pairs of commercial organic and conventional strawberry agroecosystems in California.

Methodology/principal Findings: At multiple sampling times for two years, we evaluated three varieties of strawberries for mineral elements, shelf life, phytochemical composition, and organoleptic properties. We also analyzed traditional soil properties and soil DNA using microarray technology. We found that the organic farms had strawberries with longer shelf life, greater dry matter, and higher antioxidant activity and concentrations of ascorbic acid and phenolic compounds, but lower concentrations of phosphorus and potassium. In one variety, sensory panels judged organic strawberries to be sweeter and have better flavor, overall acceptance, and appearance than their conventional counterparts. We also found the organically farmed soils to have more total carbon and nitrogen, greater microbial biomass and activity, and higher concentrations of micronutrients. Organically farmed soils also exhibited greater numbers of endemic genes and greater functional gene abundance and diversity for several biogeochemical processes, such as nitrogen fixation and pesticide degradation.

Conclusions/significance: Our findings show that the organic strawberry farms produced higher quality fruit and that their higher quality soils may have greater microbial functional capability and resilience to stress. These findings justify additional investigations aimed at detecting and quantifying such effects and their interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931688PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012346PLOS

Publication Analysis

Top Keywords

fruit soil
8
soil quality
8
organic
8
organic conventional
8
conventional strawberry
8
strawberry agroecosystems
8
organic farms
8
shelf life
8
organically farmed
8
farmed soils
8

Similar Publications

Soil nutrients and meteorological conditions are pivotal environmental factors influencing plant growth and development. This study systematically analyzes how soil nutrients and meteorological factors influence the phenotypic growth and seed production of wild Elymus nutans in Tibet. These environmental factors are critical ecological determinants, and this research seeks to unveil the complex and diverse ecological adaptation mechanisms of the species.

View Article and Find Full Text PDF

Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.

View Article and Find Full Text PDF

The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.

View Article and Find Full Text PDF

Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.

View Article and Find Full Text PDF

Hapten prediction, monoclonal antibody preparation, and development of an immunochromatographic assay for the detection of fenamiphos.

J Hazard Mater

January 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, PR China. Electronic address:

Fenamiphos (FENA) is an organophosphorus insecticide, and its residues in fruits, vegetables, and the environment have raised concerns. Therefore, it is very important to develop a simple, rapid, and accurate method for FENA detection. In this study, a novel FENA hapten was designed and predicted based on computer-aided simulation technology, and high-performance anti-FENA monoclonal antibodies were screened using a matrix effect-enhanced screening method, with a half-maximal inhibitory concentration of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!