Objectives: To determine if a sensitive D-dimer assay can exclude progression to organ dysfunction, death, and intensive care unit (ICU) admission in patients presenting to the emergency department (ED) with suspected infection, and if increasing levels of D-dimer are predictive of those end points.

Methods: The study took place at two academic EDs, both located in tertiary care hospitals. This was a prospective convenience sample of adult patients presenting with an infective process and at least two of four criteria for the Systemic Inflammatory Response Syndrome. We measured D-dimer levels in the participants and abstracted their records for the end points. Sensitivity and specificity were calculated and receiver operating characteristic analysis was performed to determine if a higher cutoff would have a greater specificity for our end points.

Results: We enrolled 134 patients. Twelve were excluded from analysis (10 for lack of a D-dimer, one for recent surgery, and one for complete loss to follow up). Using the cutoff of 0.4 established by our laboratories as positive, the D-dimer had a sensitivity of 94% (CI95; 76-99) for organ dysfunction in the ED, 93% (72-99) for organ dysfunction at 48 hours, 93% (81-98) for ICU admission, and 100% (63-100) for 30-day mortality. However, at this cutoff, specificity was not statistically significant. Significantly raising the cutoff for a positive resulted in a decrease in sensitivity but improved specificity.

Conclusion: This study was limited by its nonconsecutive patient recruitment and sample size. A normal D-dimer may exclude progression to organ dysfunction, ICU admission, and death and, at higher cutoff levels, could help risk stratify patients presenting to the ED with signs of sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908653PMC

Publication Analysis

Top Keywords

organ dysfunction
16
icu admission
12
patients presenting
12
exclude progression
8
progression organ
8
higher cutoff
8
d-dimer
7
cutoff
5
pilot study
4
study performance
4

Similar Publications

Importance: Multiple organ dysfunction (MOD) is a leading cause of in-hospital child mortality. For survivors, posthospitalization health care resource use and costs are unknown.

Objective: To evaluate longitudinal health care resource use and costs after hospitalization with MOD in infants (aged <1 year) and children (aged 1-18 years).

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Background: Pelvic organ prolapse (POP) occurs when one or more pelvic organs (uterus, bowel, bladder or top of the vagina) descend from their normal position and bulge into the vagina. Symptoms include pelvic discomfort, fullness, and changes in bladder or bowel function. Treatment ranges from conservative approaches to surgery, depending on symptom severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!