Fibrosis is a fundamental component of the adverse structural remodelling of myocardium found in hypertensive heart disease (HHD). A replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium. Such scarring has adverse functional consequences. The extensive distribution of fibrosis involving the right and left heart suggests cardiomyocyte necrosis is widespread. Together, the loss of these contractile elements and fibrous tissue deposition in the form of stiff in-series and in-parallel elastic elements contribute to the progressive failure of this normally efficient muscular pump. Pathogenic mechanisms modulating fibrous tissue formation at sites of repair include auto/paracrine properties of locally generated angiotensin II and endothelin-1. This study focuses on the signal-transducer-effector pathway involved in cardiomyocyte necrosis and the crucial pathogenic role of intracellular calcium overloading, and the subsequent induction of oxidative stress originating within its mitochondria that dictates the opening of the mitochondrial permeability transition pore. The ensuing osmotic destruction of these organelles is followed by necrotic cell death. It is now further recognized that calcium overloading of cardiac myocytes and mitochondria functioning as pro-oxidant is pathophysiologically counterbalanced by an intrinsically coupled zinc entry, which serves as an antioxidant. The prospect of raising intracellular zinc by adjuvant nutriceutical supplementation can, therefore, be preferentially exploited to uncouple this intrinsically coupled calcium-zinc dyshomeostasis in favour of endogenous antioxidant defences. Novel cardioprotective strategies may thus be at hand and deserve to be explored further in the overall management of patients with HHD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992441 | PMC |
http://dx.doi.org/10.1097/01.hjh.0000388491.35836.d2 | DOI Listing |
PLoS One
January 2025
Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China.
Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.
Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.
Mol Med
January 2025
The First People's Hospital of Lin'an District, No. 360, Yikang Street, Jinnan Subdistrict, Lin'an District, Hangzhou, Zhejiang, 311300, China.
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei General Hospital, Shijiazhuang City, Hebei Province, P.R. China.
Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.
Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.
Front Pharmacol
January 2025
The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!