Prolonged exposure to high level of estrogen is a known risk factor for breast carcinogenesis. It has been suggested recently that nitrative stress may be an etiologic factor for breast carcinogenesis. Since sulfation plays a major role in the homeostasis of estrogens and their metabolites, we attempted in the present study to find out whether nitrative stress may affect the homeostasis of estrogens through sulfation. Metabolic labeling experiments revealed that the amount of sulfated 17beta-estradiol or 4-methoxyestradiol decreased dramatically in MCF-10A mammary epithelial cells incubated in the presence of 3-morpholinosydnonimine (SIN-1) or diethylenetriamine NONOate (DETA NONOate), two nitric oxide donors commonly used to simulate nitrative stress conditions. In searching for the mechanism underlying the decrease of the sulfation of 17beta-estradiol and 4-methoxyestradiol, we demonstrated in an in vitro nitration experiment, that the human cytosolic sulfotransferase isoform 1E1 (SULT1E1), a major estrogen-sulfating enzyme, lost its estrogen-sulfating activity proportionately to the degree of nitration on tyrosine residues. Moreover, cell lysates prepared from MCF-10A cells treated with SIN-1 or DETA NONOate also showed much lower 4-methoxyestradiol-sulfating activities, compared with those determined with cell lysate prepared from control MCF-10A cells.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.33.1633DOI Listing

Publication Analysis

Top Keywords

nitrative stress
16
mammary epithelial
8
epithelial cells
8
factor breast
8
breast carcinogenesis
8
homeostasis estrogens
8
17beta-estradiol 4-methoxyestradiol
8
deta nonoate
8
mcf-10a cells
8
inhibitory effects
4

Similar Publications

Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.

View Article and Find Full Text PDF

Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.

View Article and Find Full Text PDF

In this study, heterozygous expression of a common Parkinson-associated GBA1 variant, the L444P mutation, was found to exacerbate α-synuclein aggregation and spreading in a mouse model of Parkinson-like pathology targeting neurons of the medullary vagal system. These neurons were also shown to become more vulnerable to oxidative and nitrative stress after L444P expression. The latter paralleled neuronal formation of reactive oxygen species and led to a pronounced accumulation of nitrated α-synuclein.

View Article and Find Full Text PDF

Nitration of Tyr37 alters the aggregation pathway of hIAPP and enhances its cytotoxicity.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China. Electronic address:

The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP.

View Article and Find Full Text PDF

Understanding the impact of placental oxidative and nitrative stress in pregnancies complicated by fetal growth restriction.

Placenta

December 2024

School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia. Electronic address:

Fetal growth restriction (FGR) impacts approximately 10 % of all pregnancies worldwide and is associated with major adverse effects on fetal health in both the short- and long-term [1]. FGR most commonly arises as a result of impaired placentation, occurring in up to 60 % of cases in developed countries [2]. This narrative review outlines the impact of defective placentation on the placenta, focusing on redox imbalance, how this leads to placental oxidative and nitrative stress, and the implications of these stressors on placental nutrient transfer, premature replicative senescence, and trophoblast cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!