Lung concentrations of a drug are expected to drive the pharmacodynamic response to local inflammation after inhalation delivery, and the only way of determining the efficacious dose has been to measure it directly in animal models. In this study, we present a method to predict efficacious lung doses after inhalation in a rat lipopolysaccharide challenge model from in silico predictions of lung concentration and in vitro measurements only. A quantitative structure-activity relationship (QSAR) model, based on calculated physical properties predicted the partitioning of 34 compounds between lung and plasma. Because it was observed that lung/plasma partitioning correlated with lung concentration, it was possible to use this relationship to predict lung concentration at a given dose and time point. Based on the pharmacokinetic-pharmacodynamic (PKPD) relationship observed, a minimal free lung concentration relative to potency to drive significant inhibition of neutrophilia was established. By using predicted lung concentrations, measured fraction unbound in plasma, and cellular potency, it was possible to estimate an inhaled lung dose that would be expected to achieve this target exposure. These predictions were made for 23 compounds, which were not part of the original QSAR training set, and all except one were predicted to within 3-fold of their measured values. This novel approach shows that by understanding PKPD relationships and drivers for lung affinity after inhalation dosing, it is possible to estimate in vivo lung doses required for efficacy. This methodology provides a useful screening tool to rank candidate compounds and minimizes the use of extensive animal testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.110.034462 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana 121001, India.
Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with increases itaconate levels in lung tissues.
View Article and Find Full Text PDFInhal Toxicol
January 2025
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.
View Article and Find Full Text PDFBlood
January 2025
University Hospital, LMU Munich, Munich, Germany.
Platelets are crucial players in hemostasis and thrombosis, but also contribute to immune regulation and host defense, using different receptors, signaling pathways and effector functions, respectively. Whether distinct subsets of platelets specialize in these diverse tasks is insufficiently understood. Here, we employed an in vivo pulse-labelling method in Mus musculus models for tracking in vivo platelet ageing and its functional implications.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xian, China.
Objective: Research on the inequality of chronic respiratory disease (CRD) is limited, and the association between CRD and all-cause mortality is not well-established. Investigating the distribution of CRD and its associated mortality risks is essential for improving CRD conditions and developing targeted intervention measures. This study aimed to explore the relationship between inequalities in CRD and all-cause mortality in China.
View Article and Find Full Text PDFNanoscale
January 2025
Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!