Cellular adaptation to environmental stress conditions requires rapid and specific changes in gene expression. During heat shock, most polyadenylated mRNAs are retained in the nucleus, whereas the export of heat shock-induced mRNAs is allowed. Although essential mRNA export factors are known, the precise mechanism for regulating transport is not fully understood. Here we find that during heat shock in Saccharomyces cerevisiae, the mRNA-binding protein Nab2 is phosphorylated on threonine 178 and serine 180 by the mitogen-activated protein (MAP) kinase Slt2/Mpk1. Slt2 is required for nuclear poly(A(+)) mRNA accumulation upon heat shock, and thermotolerance is decreased in a nup42 nab2-T178A/S180A mutant. Coincident with phosphorylation, Nab2 and Yra1 colocalize in nuclear foci with Mlp1, a protein involved in mRNA retention. Nab2 nuclear focus formation and Nab2 phosphorylation are independent, suggesting that heat shock induces multiple cellular alterations that impinge upon transport efficiency. Under normal conditions, we find that the mRNA export receptor Mex67 and Nab2 directly interact. However, upon heat shock stress, Mex67 does not localize to the Mlp1 nuclear foci, and its association with Nab2 complexes is reduced. These results reveal a novel mechanism by which the MAP kinase Slt2 and Mlp1 control mRNA export factors during heat shock stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953050PMC
http://dx.doi.org/10.1128/MCB.00735-10DOI Listing

Publication Analysis

Top Keywords

heat shock
24
mrna export
12
mitogen-activated protein
8
kinase slt2
8
heat
8
heat shock-induced
8
export factors
8
map kinase
8
nuclear foci
8
shock stress
8

Similar Publications

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.

View Article and Find Full Text PDF

Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases.

View Article and Find Full Text PDF

Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.

View Article and Find Full Text PDF

Background: We have previously developed a candidate therapeutic HPV DNA vaccine (pBI-11) encoding mycobacteria heat shock protein 70 linked to HPV16/18 E6/E7 proteins for the control of advanced HPV-associated oropharyngeal cancer (NCT05799144). While naked DNA vaccines are readily produced, stable, and well tolerated, their potency is limited by the delivery efficiency. Here we compared three different IM delivery strategies, including intramuscular (IM) injection, either with a needle alone or with electroporation at the injection site, and a needle-free injection system (NFIS), for their ability to elicit gene expression and to improve the potency of pBI-11 DNA vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!