Evolutionary origin of the cell nucleus and its functional architecture.

Essays Biochem

University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Institute of Cell Biology, Witten, Germany.

Published: September 2010

Understanding the evolutionary origin of the nucleus and its compartmentalized architecture provides a huge but, as expected, greatly rewarding challenge in the post-genomic era. We start this chapter with a survey of current hypotheses on the evolutionary origin of the cell nucleus. Thereafter, we provide an overview of evolutionarily conserved features of chromatin organization and arrangements, as well as topographical aspects of DNA replication and transcription, followed by a brief introduction of current models of nuclear architecture. In addition to features which may possibly apply to all eukaryotes, the evolutionary plasticity of higher-order nuclear organization is reflected by cell-type- and species-specific features, by the ability of nuclear architecture to adapt to specific environmental demands, as well as by the impact of aberrant nuclear organization on senescence and human disease. We conclude this chapter with a reflection on the necessity of interdisciplinary research strategies to map epigenomes in space and time.

Download full-text PDF

Source
http://dx.doi.org/10.1042/bse0480001DOI Listing

Publication Analysis

Top Keywords

evolutionary origin
12
origin cell
8
cell nucleus
8
nuclear architecture
8
nuclear organization
8
evolutionary
4
nucleus functional
4
architecture
4
functional architecture
4
architecture understanding
4

Similar Publications

<b>Background and Objective:</b> It is well documented that Whole Genome Sequencing (WGS) has recently used to explore new resistance patterns and track the dissemination of extensive and pan drug-resistant microbes in healthcare settings. This article explores the link between traumatic infections caused by road traffic accidents (RTAs) leading to coma and the development of chest infections caused by extensively drug-resistant (XDR) <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>. <b>Materials and Methods:</b> The study was carried out from March to December 2022 which included a 45-year-old male patient admitted to the ICU of Al Ramadi Teaching Hospitals following a severe RTA that resulted in a TBI and subsequent coma.

View Article and Find Full Text PDF

Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.

View Article and Find Full Text PDF

To forecast how fast populations can adapt to climate change, it is essential to determine the evolutionary potential of different life-cycle stages under selection. In birds, timing of gonadal development and moult are primarily regulated by photoperiod, while laying date is highly phenotypically plastic to temperature. We tested whether geographic variation in phenology of these life-cycle events between populations of great tits () has a genetic basis, indicating that contemporary genetic adaptation is possible.

View Article and Find Full Text PDF

Social learning preserves both useful and useless theories by canalizing learners' exploration.

Proc Biol Sci

January 2025

Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK.

In many domains, learning from others is crucial for leveraging cumulative cultural knowledge, which encapsulates the efforts of successive generations of innovators. However, anecdotal and experimental evidence suggests that reliance on social information can reduce the exploration of the problem space. Here, we experimentally investigate the extent to which cultural transmission fosters the persistence of arbitrary solutions in a context where participants are incentivized to improve a physical system across multiple trials.

View Article and Find Full Text PDF

In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!