A series of one-, two-, and three-branched chromophores based on 3-hydroxyflavones (1-3) have been synthesized as the first example of multibranched chromophores demonstrating excited-state intramolecular proton transfer (ESIPT). Coupling between the 3-hydroxyflavone branches connected by an electron-donating triphenylamine core is manifested in the red-shifted and asymmetric absorption band of 2, whereas the absorption of 3 is governed by the divided donor strength. Their excited-state charge-transfer (ESCT)-coupled ESIPT dynamics is investigated via femtosecond fluorescence upconversion and is proved to be well correlated with the ratio of normal/tautomer emission in the fluorescence spectra. For 1 and 2, with increased donor strength compared with the 4'-N,N-dialkylamino-3-hydroxyflavone analogue, ESIPT appears to cease in the more polar solvent of acetonitrile. Nevertheless, similar dependence of 1-3 on solvent polarity signifies resembling charge-transfer character at the normal excited states (N*), despite their varying structures. As evidenced by the theoretical approach, the frontier orbitals of vibrationally relaxed (geometry-optimized) N*, from which fluorescence and ESIPT should take place, are localized on one specific branch, leading to similar emission patterns and dynamics, whereas the orbitals contributing to Franck-Condon excitation (absorption) spread over the entire molecule. The localization is found to be facilitated by rotation of a specific branch pivoting on the central nitrogen atom, while planarity is maintained within each 3-hydroxyflavone chromophore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp105542z | DOI Listing |
J Phys Chem A
January 2025
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.
View Article and Find Full Text PDFChemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:
7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan.
A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir()(tpy)]PF ( = 2-phenylpyridinate (ppy) for ; benzo[h]quinolinate (bzq) for ; 1-phenylisoquinolinate (piq) for ; and 2-phenylbenzothiazolate (pbt) for ), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of - are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of - form intramolecular π-π stacking interactions with a phenyl moiety of ligands. In addition, the pendant pyridine ring in the tpy ligand of forms an intramolecular hydrogen bonding interaction, unlike in -.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!