Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro-in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro-in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025274 | PMC |
http://dx.doi.org/10.1021/mp100149j | DOI Listing |
Medicine (Baltimore)
January 2025
Anorectal Department, People's Hospital of Leshan, Leshan, Sichuan, China.
Background: This study evaluates the efficacy of a novel bismuth subgallate-borneol compound ointment as an adjuvant therapy in promoting postoperative healing of infectious incisions after anorectal surgery.
Methods: From June 2023 to October 2023, 46 patients with perianal abscess and anal fistula treated at our institution's Anorectal Surgery Department were enrolled in this prospective randomized controlled study. Patients were randomly allocated into 2 groups: the experimental group (n = 23) received conventional wound care plus a proprietary ointment containing 4.
PLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Department of Experimental Pathology, Federal University of São João del-Rei, Divinópolis 36301-158, Brazil.
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx III, a new peptide extracted from the venom of the spider, stands out.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Biomedical Laboratory Science, Daegu Health College, Chang-ui Building, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea.
Point-of-care (POC) use is one of the essential goals of biosensing platforms. Because the increasing demand for testing cannot be met by a centralized laboratory-based strategy, rapid and frequent testing at the right time and place will be key to increasing health and safety. To date, however, there are still difficulties in developing a simple and affordable, as well as sensitive and effective, platform that enables POC use.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
Artificial intelligence (AI) is a rapidly transforming drug discovery and development process, significantly impacting the pharmaceutical industry and enhancing human health. This review article examines the tremendous role of AI in analyzing complex biological data, optimizing research processes, and reducing costs of production. Implementation of AI in the pharmaceutical sector can store a vast dataset of manufacturing processes, identify potential disease targets, simulate physiological conditions, and predict drug interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!